Skip to main content

Heavy Metal Sensing Based on Diamond Electrodes

  • Chapter
  • First Online:
Book cover Carbon-Based Nanosensor Technology

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 17))

Abstract

Electrochemical detections of heavy metals were summarized employing the unique properties of boron-doped diamond (BDD). Voltammetric techniques including linear-sweep voltammetry (LSV), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV) were mainly applied for the detection. Furthermore, the metal target and inter-reaction of the metal targets, pH, electrolytes, and potential applied were found to strongly affect the detection results. In this chapter, some techniques developed to overcome the problems were discussed, including the modification of BDD with metals or non-metals as well as integration of the electrochemical system against other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tu C, Shao Y, Gan N, Xu Q, Guo Z (2004). Inorg Chem 43:4761–4766

    CAS  PubMed  Google Scholar 

  2. Tuzen M, Melek E, Soylak M (2006). J Hazard Mater 136:597–603

    CAS  PubMed  Google Scholar 

  3. Kemper T, Sommer S (2002). Environ Sci Technol 36:2742–2747

    CAS  PubMed  Google Scholar 

  4. Liu Z-G, Huang X-J (2014). Trends Anal Chem 60:25–35

    CAS  Google Scholar 

  5. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2008). J Am Chem Soc 130:8576–8577

    CAS  PubMed  Google Scholar 

  6. Fan I, Chen J, Zhu S, Wang M, Xu G (2009). Electrochem Commun 11:1823–1825

    CAS  Google Scholar 

  7. Szlyk E, Szydlowska-Czerniak A (2004). J Agric Food Chem 52:4064–4071

    CAS  PubMed  Google Scholar 

  8. Zuman P (1999). Electroanalysis 15:1187–1192

    Google Scholar 

  9. Wang J (2006) Analytical electrochemistry3rd edn. Wiley, Hoboken

    Google Scholar 

  10. Nolan MA (1999). Anal Chem 71:567–3573

    Google Scholar 

  11. Kruusma J, Banks CE, Compton RG (2004). Anal Bioanal Chem 379:700–706

    CAS  PubMed  Google Scholar 

  12. Kruusma J, Nei L, Hardcastle JL, Compton RG, Lust E, Keis H (2004). Electroanalysis 16:2299–2403

    Google Scholar 

  13. Wang J, Lu J, Hocevar SB, Farias PAM, Ogorevc B (2000). Anal Chem 72:3218–3222

    CAS  PubMed  Google Scholar 

  14. Aragay G, Pons J, Merkoci A (2011). J Mater Chem 21:4326–4331

    CAS  Google Scholar 

  15. Cesarino I, Gouveia-Caridade C, Pauliukaite R, Cavalheiro ETG, Brett CMA (2010). Electroanalysis 22:1437–1445

    CAS  Google Scholar 

  16. Andrews RW, Johnson DC (1975). Anal Chem 47:294–299

    CAS  Google Scholar 

  17. Wang J, Tian B (1993). Anal Chem 65:1529–1532

    CAS  PubMed  Google Scholar 

  18. Bonfil Y, Kirowa-Eisner E (2002). Anal Chim Acta 457:285–296

    CAS  Google Scholar 

  19. Kirowa-Eisner E, Brand M, Tzur D (1999). Anal Chim Acta 385:325–335

    CAS  Google Scholar 

  20. Brownson DAC, Banks CE (2012). RSC Adv 2:5385–5389

    CAS  Google Scholar 

  21. Gong XJ, Bi YL, Zhao YH, Liu GZ, Teoh WY (2014). RSC Adv 4:24653–24657

    CAS  Google Scholar 

  22. Wang J, Tian BM (1992). Anal Chem 64:1706–1709

    CAS  Google Scholar 

  23. Fujishima A, Einaga Y, Rao TN, Tryk DA (2005) Diamond electrochemistry. BKC-Elsevier, Tokyo

    Google Scholar 

  24. Manivannan A, Kawasaki R, Tryk DA, Fujishima A (2004). Electrochim Acta 49:3313–3318

    CAS  Google Scholar 

  25. Manivannan A, Tryk DA, Fujishima A (2004). Fuel Process Technol 85:513–519

    CAS  Google Scholar 

  26. Chen Q, Granger MC, Lister TE, Swain GM (1997). J Electrochem Soc 144:3806–3812

    CAS  Google Scholar 

  27. Yamada D, Ivandini TA, Komatsu M, Fujishima A, Einaga Y (2008). J Electroanal Chem 615:145–153

    CAS  Google Scholar 

  28. Saterlay AJ, Marken F, Foord JS, Compton RG (2000). Talanta 53:403–415

    CAS  PubMed  Google Scholar 

  29. El-Maali NA, El-Hady DA (1998). Anal Chim Acta 370:239–249

    Google Scholar 

  30. Li JH, Kuang DZ, Feng YL, Liu MQ (2011). Asian J Chem 23:4959–5964

    CAS  Google Scholar 

  31. Manivannan A, Tryk DA, Fujishima A (1999). Electrochem Solid State Lett 2:455–456

    CAS  Google Scholar 

  32. Langeloth M, Chiku M, Einaga Y (2010). Electrochim Acta 55:2824–2828

    CAS  Google Scholar 

  33. Babyak C, Smart RB (2004). Electroanalysis 16:175–182

    CAS  Google Scholar 

  34. Foord JS, Eaton K, Hao W, Crossley A (2005). Phys Chem Chem Phys 7:2787–2792

    CAS  PubMed  Google Scholar 

  35. Foord JS, Hao W, Eaton K, Crossley A (2005). Phys Status Solidi A 202:2116–2121

    CAS  Google Scholar 

  36. Granger MC, Witek M, Xu J, Wang J, Hupert M, Hanks A, Koppang MD, Buttler JE, Lucazeau G, Mermoux M, Strojeck JW, Swain GM (2000). Anal Chem 72:3793–3804

    CAS  PubMed  Google Scholar 

  37. McGaw EA, Swain GM (2006). Anal Chim Acta 575:180–189

    CAS  PubMed  Google Scholar 

  38. Show Y, Witek MA, Sonthalia P, Swain GM (2003). Chem Mater 15:879–888

    CAS  Google Scholar 

  39. Manivannan A, Seehra MS, Tryk DA, Fujishima A (2002). Anal Lett 35:355–368

    CAS  Google Scholar 

  40. Sonthalia P, McGaw EA, Swain GM (2004). Anal Chem Acta 522:35–44

    CAS  Google Scholar 

  41. Seehra MS, Ranganathan S, Manivannan A (2008). Anal Lett 41:2162–2170

    CAS  Google Scholar 

  42. Dragoe D, Spataru N, Kawasaki R, Manivannan A, Spataru T, Tryk DA, Fujishima A (2006). Electrochim Acta 51:2437–2441

    CAS  Google Scholar 

  43. Prado C, Wilkins DJ, Marken F, Compton RG (2002). Electroanalysis 14:262–272

    CAS  Google Scholar 

  44. Fierro S, Watanabe T, Akai K, Yamanuki M, Einaga Y (2011). J Electrochem Soc 158:F173–F178

    CAS  Google Scholar 

  45. Honorio GG, Azevedo GC, Matos MAC, de Oliviera MAL, Matos RC (2014). Food Control 36:42–48

    CAS  Google Scholar 

  46. Yoon JH, Yang J, Kim J, Bae J, Shim YB, Won MS (2010). Bull Kor Chem Soc 31:140–145

    CAS  Google Scholar 

  47. Sugitani A, Watanabe T, Ivandini TA, Iguchi T, Einaga Y (2013). Phys Chem Chem Phys 15:142–147

    CAS  PubMed  Google Scholar 

  48. Fierro ST, Akai K, Einaga Y (2012). J Electrochim Acta 82:9–11

    CAS  Google Scholar 

  49. El Tall O, Jaffrezik-Renault N, Sigaud M, Vittori O (2007). Electroanalysis 19:1152–1159

    Google Scholar 

  50. Uchikado R, Rao TN, Tryk DA, Fujishima A (2001). Chem Lett 2:144–145

    Google Scholar 

  51. Ivandini TA, Saepudin E, Wardah H, Harmesa, Dewangga N, Einaga Y (2012). Anal Chem 84:9825–9832

    CAS  PubMed  Google Scholar 

  52. Kondo T, Hirata K, Kawai T, Yuasa M (2011). Diam Relat Mater 20:1171–1178

    CAS  Google Scholar 

  53. Tian RH, Rao TN, Einaga Y, Zhi ZF (2006). Chem Mater 18:939–945

    CAS  Google Scholar 

  54. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2006). Anal Chem 78:6291–6298

    CAS  PubMed  Google Scholar 

  55. Ivandini TA, Einaga Y (2013). Electrocatalysis 4:367–374

    CAS  Google Scholar 

  56. Song Y, Swain GM (2007). Anal Chim Acta 593:7–12

    CAS  PubMed  Google Scholar 

  57. Ivandini TA, Yamada D, Watanabe T, Matsuura H, Nakano N, Fujishima A, Einaga Y (2010). J Electroanal Chem 645:58–63

    CAS  Google Scholar 

  58. Toghil KE, Wildgoose GG, Moshar A, Mulcahy C, Compton RG (2008). Electroanalysis 20:1731–1737

    Google Scholar 

  59. Salimi A, Hyde ME, Banks CE, Compton RG (2004). Analyst 129:9–14

    CAS  Google Scholar 

  60. Salimi A, Alizadeh V, Hallaj R (2006). Talanta 68:1610–1616

    CAS  PubMed  Google Scholar 

  61. Kalish R, Reznik A, Nygent KW, Prawer S (1999). Nucl Inst Methods Phys Res B 148:626–633

    CAS  Google Scholar 

  62. Chong KF, Loh KP, Ang K, Ting YP (2008). Analyst 133:739–743

    CAS  PubMed  Google Scholar 

  63. Ishii Y, Ivandini TA, Murata K, Einaga Y (2013). Anal Chem 85:4284–4288

    CAS  PubMed  Google Scholar 

  64. Wiedemann DJ, Kawagoe KT, Kennedy RT, Ciolkowski EL, Wightman RM (1991). Anal Chem 63:2965–2970

    CAS  PubMed  Google Scholar 

  65. Dressman SF, Peters JL, Michael AC (2002). J Neurosci Methods 119:75–81

    CAS  PubMed  Google Scholar 

  66. Suzuki A, Ivandini TA, Yoshimi K, Fujishima A, Oyama G, Nakazato T, Hattori N, Kitazawa S, Einaga Y (2007). Anal Chem 79:8608–8615

    CAS  PubMed  Google Scholar 

  67. Ordeig O, del Campo J, Munoz FX, Banks CE, Compton RG (2007). Electroanalysis 19:1973–1986

    CAS  Google Scholar 

  68. Silva EL, Bastos AC, Neto MA, Silva RF, Zheludkevich ML, Ferreira MGS, Oliveira FJ (2012). Electrochim Acta 76:487–494

    CAS  Google Scholar 

  69. Cutress IJ, Compton RG (2009). Electroanalysis 211:2617–2625

    Google Scholar 

  70. Lawrence NS, Pagels M, Meredith A, Jones TGC, Hall CE, Pickles CSJ, Godfried HP, Banks CE, Compton RG, Jiang L (2006). Talanta 69:829–834

    CAS  PubMed  Google Scholar 

  71. Tsunozaki K, Einaga Y, Rao TN, Fujishima A (2002). Chem Lett 5:502–503

    Google Scholar 

  72. Provent C, Haenni W, Santoli E, Rychen P (2004). Electrochim Acta 49:3737–3744

    CAS  Google Scholar 

  73. Simm AO, Banks CE, Compton RG (2005). Electroanalysis 17:335–345

    CAS  Google Scholar 

  74. Simm AO, Banks CE, Ward-Jones S, Davies TJ, Lawrence NS, Jones TGJ, Jiang L, Compton RG (2005). Analyst 130:1303–1311

    CAS  PubMed  Google Scholar 

  75. Argun AA, Banks AM, Merlen G, Tempelman LA, Becker MF, Schuelke T, Dweik BM (2013). Anal Chim Acta 773:45–51

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sbartai A, Namour P, Errachid A, Krejci J, Sejnohova R, Renaud L, Hamlaoui ML, Loir A-S, Garrelie F, Donnet C, Soder H, Audoard A, Granier J, Jaffrezic-Renault N (2012). Anal Chem 84:4805–4811

    CAS  PubMed  Google Scholar 

  77. Read T, Bitziou E, Joseph MB, Macpherson JV (2014). Anal Chem 86:367–371

    CAS  PubMed  Google Scholar 

  78. Thanh SL, Da Costa P, Huguet P, Sistat P, Pichot F, Silva F, Renaud L, Cretin M (2012). J Electroanal Chem 670:50–55

    Google Scholar 

  79. Almeida EC, Azevedo AF, Baldan MR, Rosolen JM, Fereira NG (2007). Chem Phys Lett 438:47–52

    CAS  Google Scholar 

  80. Fereire NG, Abramof E, Corat EJ, Leite NF, Trava-Airoldi VJ (2001). Diam Relat Mater 10:750–754

    Google Scholar 

  81. MacPherson JV (2015). Phys Chem Chem Phys 17:2935–2949

    CAS  PubMed  Google Scholar 

  82. Wang S, Swope VM, Bulter JE, Feygelson T, Swain GM (2009). Diam Relat Mater 18:669–677

    CAS  Google Scholar 

  83. Fischer AE, Show Y, Swain GM (2004). Anal Chem 76:2553–2560

    CAS  PubMed  Google Scholar 

  84. Arantes TM, Sardinga A, Baldan MR, Cristovan FH, Ferreire NG (2014). Talanta 128:132–140

    CAS  PubMed  Google Scholar 

  85. Tanaka Y, Furuta M, Kuriyama K, Kuwabara R, Katsuki Y, Kondo T, Fujishima A, Honda K (2011). Electrochem Acta 56:1172–1181

    CAS  Google Scholar 

  86. Khun NW, Liu E (2010). Diam Relat Mater 19:1065–1072

    CAS  Google Scholar 

  87. Khun NW, Liu E (2009). Diam Relat Mater 54:2890–2898

    CAS  Google Scholar 

  88. Khadro B, Sikora A, Loir A-S, Errachid A, Garrelie F, Donet C, Jaffrezic-Renault N (2011). Sensors Actuat B 155:120–125

    CAS  Google Scholar 

  89. Yoo K, Miller B, Kalish R, Shi X (1999). Electrochem Solid State Lett 2:233–235

    CAS  Google Scholar 

  90. Tamiasso-Martinhon P, Cachet H, Debiemme-Chouvy C, Deslouis C (2008). Electrochem Acta 53:5752–5759

    CAS  Google Scholar 

  91. Pleskov YV, Krotova MD, Polyakov VI, Khomich AV, Rulovishnikov AI, Druz BL, Zaritskiy I (2002). J Electroanal Chem 519:60–64

    CAS  Google Scholar 

  92. Rehacek V, Hotovy I, Vojs M, Mika F (2008). Microsyst Technol 14:491–498

    CAS  Google Scholar 

  93. Zeng A, Liu E, Tan SN, Zhang S, Gao J (2002). Electroanalysis 14:1294–1298

    CAS  Google Scholar 

  94. Liu LX, Liu E (2005). Surf Coat Technol 198:189–193

    CAS  Google Scholar 

  95. Akkermans RP, Roberts SL, Marken F, Coles BA, Wilkins SJ, Copper JA, Woodhouse KE, Compton RG (1999). J Phys Chem B 103:9987–9995

    CAS  Google Scholar 

  96. Fagan DT, Hu IF, Kuwana T (1985). Anal Chem 57:2759–2763

    CAS  Google Scholar 

  97. Compton RG, Coles BA, Marken F (1998). Chem Commun 23:2595–2596

    Google Scholar 

  98. Fletcher PD, Grice DD, Haswell SJ (2001). Phys Chem Chem Phys 3:1067–1072

    CAS  Google Scholar 

  99. Zhao G, Shen S, Li M, Wu M, Cao T, Li T (2008). Chemosphere 73:1407–1413

    CAS  PubMed  Google Scholar 

  100. Brennan JL, Forster RJ (2003). J Phys Chem B 107:9344–9350

    CAS  Google Scholar 

  101. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004). Appl Catal B 47:209–256

    Google Scholar 

  102. Viirre RD, Evindar G, Batey RA (2008). J Org Chem 73:3452–3459

    CAS  PubMed  Google Scholar 

  103. Marken F, Matthew SL, Compton RG, Coles BA (2000). Electroanalysis 12:267–273

    CAS  Google Scholar 

  104. Marken F, Tsai C, Coles BA, Matthews SL, Compton RG (2000). New J Chem 24:653–658

    CAS  Google Scholar 

  105. Sur UK, Marken F, Rees N, Coles BA, Compton RG, Seager R (2004). J Electroanal Chem 573:175–182

    CAS  Google Scholar 

  106. Horikoshi S, Hidaka H, Serpone N (2003). J Photochem Photobiol A Chem 159:289–300

    CAS  Google Scholar 

  107. Sur UK, Marken F, Seager R, Foord JS, Chatterjee A, Coles BA, Compton RG (2005). Electroanalysis 17:385–391

    CAS  Google Scholar 

  108. Gao J, Zhao G, Liu M, Li D (2009). J Phys Chem A 113:10466–10437

    CAS  PubMed  Google Scholar 

  109. Tsai YC, Coles BA, Holt K, Foord JS, Marken F, Compton RG (2001). Electroanalysis 13:831–835

    CAS  Google Scholar 

  110. Marken F, Tsai YC, Saterlay AJ, Coles BA, Tibbets D, Holt K, Goeting CH, Foord JS, Compton RG (2001). J Solid State Electrochem 5:313–318

    CAS  Google Scholar 

  111. Tsai YC, Coles BA, Compton RG, Marken F (2002). J Am Chem Soc 124:9784–9788

    CAS  PubMed  Google Scholar 

  112. Atobe M, Nonaka T (1999). Electrochemistry 67:919–924

    CAS  Google Scholar 

  113. Saterlay AJ, Agra-Gutierrex C, Taylor MP, Marken F, Compton RG (1999). Electroanalysis 11:1083–1088

    CAS  Google Scholar 

  114. Saterlay AJ, Foord JS, Compton RG (1999). Analyst 124:1791–1796

    CAS  PubMed  Google Scholar 

  115. Banks CE, Hyde ME, Tomcik P, Jacobs R, Compton RG (2004). Talanta 62:279–286

    CAS  PubMed  Google Scholar 

  116. Cooper EL, Coury Jr LA (1998). J Electrochem Soc 145:1994–1999

    CAS  Google Scholar 

  117. Marken F, Akkermans RP, Compton RG (1996). J Electroanal Chem 415:55–64

    Google Scholar 

  118. Banks CE, Compton RG (2003). Electroanalysis 15:329–346

    CAS  Google Scholar 

  119. Marken FRP, Compton RG (1998). Electrochim Acta 43:2157–2165

    CAS  Google Scholar 

  120. Marken F, Compton RG, Bull SD, Davies SC (1997). Chem Commun:995–996

    Google Scholar 

  121. Goodwin A, Lawrence AL, Banks CE, Wantz F, Omanovic D, Komorsky-Lovric E, Compton RG (2005). Anal Chim Acta 533:141–145

    CAS  Google Scholar 

  122. Hardcastle JL, Compton RG (2001). Analyst 126:2025–2031

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Einaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ivandini, T.A., Einaga, Y. (2017). Heavy Metal Sensing Based on Diamond Electrodes. In: Kranz, C. (eds) Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, vol 17. Springer, Cham. https://doi.org/10.1007/5346_2017_16

Download citation

Publish with us

Policies and ethics