Skip to main content

Structure and Bonding: The Early Days

  • Chapter
  • First Online:
50 Years of Structure and Bonding – The Anniversary Volume

Part of the book series: Structure and Bonding ((STRUCTURE,volume 172))

Abstract

In order to understand the launching in 1966 of Structure and Bonding, it is necessary to appreciate the factors which contributed to the emergence of inorganic chemistry as an equal branch of chemistry. A variety of social and economic factors contributed to the transformation of inorganic chemistry from an essentially descriptive subject into an intellectual equal of organic and physical chemistry. The aims and distinctive features of Structure and Bonding are identified with reference to the initial preface and the composition of the editorial board. The research interests and characteristics of some of the founding editorial board members are introduced and used as a basis for highlighting the important topics which were covered in the initial 50 volumes. Subsequent changes in the character of the journal are reviewed and used to introduce the present anniversary volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Labinger J (2013) Up for generality – how inorganic chemistry finally became a respectable field, Springer, briefs in molecular science, history of chemistry. Springer, Heidelberg

    Google Scholar 

  2. Nyholm RS (1957) The renaissance of inorganic chemistry. J Chem Educ 34:166–169

    Article  Google Scholar 

  3. Nyhom RS (1961) Tilden lecture: electronic configurations and structures of transition metal complexes. Proc Chem Soc 273–296

    Google Scholar 

  4. Williams RJP, Hale JD (1972) RS Nyholm – an appreciation. Struct Bond 15:1–2

    Article  Google Scholar 

  5. Roberts K, Raff M, Alberts B, Walter P, Lewis J, Johnson A (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  6. Astbury WT (1961) Molecular biology or ultrastructural biology? Nature 190:1124–1124

    Article  CAS  Google Scholar 

  7. Bethe HA (1929) Splitting of terms in crystals. Ann Physik 3:133–209

    Article  CAS  Google Scholar 

  8. Van Vleck JH (1932) Theory of the variations in paramagnetic anisotropy among different salts of the iron group. Phys Rev 41:208–232

    Article  Google Scholar 

  9. Orgel LE, Griffith JH (1957) Ligand field theory. Quart Rev 11:381–393

    Article  Google Scholar 

  10. Orgel LE (1952) The effects of crystal fields on the properties of transition metal ions. J Chem Soc 4756–4761

    Google Scholar 

  11. Orgel LE (1960) Introduction to transition metal chemistry. Methuen, London

    Google Scholar 

  12. Williams RJP (1959) Deposition of trace elements in a basic magna. Nature 184:44–44

    CAS  Google Scholar 

  13. Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Mingos DMP, Day P, Dahl JP (2012) Molecular electronic structures of transition metal complexes I and II. Struct Bond 142:1–211

    Google Scholar 

  15. Mingos DMP, Day P, Dahl JP (2012) Molecular electronic structures of transition metal complexes I and II. Struct Bond 143:229

    Google Scholar 

  16. Allen GC, Warren KD (1971) The electronic spectra of hexafluoro complexes of the first transition series. Struct Bond 9:49–138

    Article  CAS  Google Scholar 

  17. Allen GC, Warren KD (1974) The electronic spectra of hexafluoro complexes of the second and third transition series. Struct Bond 19:105–165

    Article  CAS  Google Scholar 

  18. Moreau-Colin M (1972) Electronic spectra and structural properties of complex tetracyanides of platinum palladium, nickel. Struct Bond 10:167–190

    Article  CAS  Google Scholar 

  19. Müller A, Baran EJ, Diemann E, Jørgensen CK (1976) Electronic spectra of tetrahedral oxo, thio, seleno complexes formed by elements of the beginning of the transition groups. Struct Bond 14:23–47

    Article  Google Scholar 

  20. Daul C, Schläpfer CW, von Zelewsky A (1979) The electronic structure of cobalt(II) complexes with schiff bases and related ligands. Struct Bond 36:129–171

    Article  CAS  Google Scholar 

  21. Ciampolini M (1969) Spectra of 3d five-coordinate complexes. Struct Bond 6:52–93

    Article  CAS  Google Scholar 

  22. Oelkrug D (1971) Absorption spectra and ligand field parameters of tetragonal 3d transition metal fluorides. Struct Bond 9:1–26

    Article  CAS  Google Scholar 

  23. Reinen D (1969) Ligand field spectroscopy and chemical bonding in Cr3+ containing oxide solids. Struct Bond 6:30–51

    Article  CAS  Google Scholar 

  24. Reinen D, Friebel C (1971) Local and Cooperative jahn-teller interactions in model structures, spectroscopic and structural evidence. Struct Bond 37:1–60

    Article  Google Scholar 

  25. Jørgensen CK (1965) Recent progress in ligand field theory. Struct Bond 1:3–31

    Article  Google Scholar 

  26. Schäffer CE (1968) A perturbation representation of weak covalent bonding. Struct Bond 5:68–95

    Article  Google Scholar 

  27. Schäffer CE (1973) Two symmetry parameterization of the angular overlap model of the ligand field. Relation to the crystal field model. Struct Bond 14:69–101

    Article  Google Scholar 

  28. Smith DW (1978) Applications of the angular overlap model. Struct Bond 35:87–118

    Article  CAS  Google Scholar 

  29. Schönherr T (2004) Optical spectra and chemical bonding in inorganic compounds. Struct Bond 106:1–255

    Article  Google Scholar 

  30. Schönherr T (2004) Optical spectra and chemical bonding in inorganic compounds. Struct Bond 107:1–301

    Article  CAS  Google Scholar 

  31. Duffy JA (1977) Optical electronegativity and nephelauxetic effect in oxide systems. Struct Bond 32:147–166

    Article  CAS  Google Scholar 

  32. Jørgensen CK (1966) Electric polarizability, innocent ligands and spectroscopic oxidation states. Struct Bond 1:224–248

    Google Scholar 

  33. König E (1971) The nephelauxetic effect, calculation and accuracy of the interelectronic repulsion parameters I. Cubic high-spin d2, d3, d7 and d8 systems. Struct Bond 9:175–212

    Article  Google Scholar 

  34. Jørgensen CK (1969) Valence shell expansion studied by ultraviolet spectroscopy. Struct Bond 6:94–115

    Article  Google Scholar 

  35. Reisfeld R (1973) Spectra and energy transfer of rare earths in inorganic glasses. Struct Bond 13:53–98

    Article  CAS  Google Scholar 

  36. Reisfeld R (1975) Radiative and non-radiative transitions of rare earths in inorganic glasses. Struct Bond 22:123–175

    Article  CAS  Google Scholar 

  37. Peacock RD (1975) The intensities of lanthanide f-f transitions. Struct Bond 22:83–122

    Article  CAS  Google Scholar 

  38. Sinha SP (1976) A systematic correlation of the properties of the f-f transition metal ions. Struct Bond 30:1–64

    Article  CAS  Google Scholar 

  39. Wilson JA (1977) A generalized configuration-dependent band model for lanthanide compounds and conditions for interconfiguration fluctuations. Struct Bond 32:57–91

    Article  CAS  Google Scholar 

  40. Blasse G (1976) The influence of charge transfer and rydberg states on the luminescence properties of lanthanides and actinides. Struct Bond 26:43–79

    Article  CAS  Google Scholar 

  41. Bleijenberg KC (1980) Luminescence of uranite centres in solids. Struct Bond 42:97–128

    Article  CAS  Google Scholar 

  42. Baker EC, Halstead GW, Raymond KN (1976) The structure and bonding of 4f and 5f series of organometallic compounds. Struct Bond 25:21–66

    Google Scholar 

  43. Furlani C, Cauletti C (1978) He(I) photoelectron spectra of d- metal compounds. Struct Bond 35:119–169

    Article  CAS  Google Scholar 

  44. Green JC (1981) Gas phase photoelectron spectra of d and f-block organometallic compounds. Struct Bond 43:37–112

    Article  CAS  Google Scholar 

  45. Jørgensen CK (1975) Photoelectron spectroscopy non-metallic solids and consequences for quantum chemistry. Struct Bond 24:1–58

    Article  Google Scholar 

  46. Jørgensen CK (1976) Deep lying valence orbitals and problems of degeneracy and intensities in photoelectron spectra. Struct Bond 30:141–192

    Article  Google Scholar 

  47. Bradshaw AW, Cederbaum LS, Domcke W (1975) Ultraviolet photoelectron spectroscopy gases absorbed on metal surfaces. Struct Bond 24:133–170

    Article  CAS  Google Scholar 

  48. Watson RE, Perlman ML (1975) X-Ray photoelectron spectroscopy. Applications to metal and alloys. Struct Bond 24:83–132

    Article  CAS  Google Scholar 

  49. Somorjai GA, van Hove MA (1979) Adsorbed monolayers on sold surfaces. Struct Bond 38:1–140

    Article  Google Scholar 

  50. Cook DB (1978) The approximate calculation of molecular electronic structures as a theory of valence. Struct Bond 35:37–86

    Article  CAS  Google Scholar 

  51. Gerloch M, Harding JH, Woolley G (1981) The context and application of ligand field theory. Struct Bond 46:1–46

    Article  CAS  Google Scholar 

  52. Schutte CJH (1971) The ab initio calculation of molecular vibrational frequencies and force constants. Struct Bond 9:213–263

    Article  CAS  Google Scholar 

  53. Braterman PS (1972) Spectra and bonding in metal carbonyls part A. Struct Bond 10:57–86

    Article  CAS  Google Scholar 

  54. Braterman PS (1976) Spectra and bonding in metal carbonyls part B. Struct Bond 26:1–42

    Article  CAS  Google Scholar 

  55. Ryan RR, Kubas GJ, Moody DC, Eller PG (1981) Structure and bonding of transition metal sulfur dioxide complexes. Struct Bond 46:47–100

    Article  CAS  Google Scholar 

  56. Warren KD (1976) Ligand field theory of metal sandwich complexes. Struct Bond 27:45–159

    Article  CAS  Google Scholar 

  57. Warren KD (1977) Ligand field theory of f- orbital metal sandwich complexes. Struct Bond 33:97–137

    Article  CAS  Google Scholar 

  58. Bearden AJ, Dunham AW (1970) Iron electronic configurations in proteins: studies in mössbauer spectroscopy. Struct Bond 8:1–52

    Article  CAS  Google Scholar 

  59. Van Bronswyk W (1970) The application of nuclear quadrupole spectroscopy to the study of transition metal compounds. Struct Bond 7:87–113

    Article  Google Scholar 

  60. Clark RJH, Steart B (1979) The resonance Raman effect. The review of theory and of applications in inorganic chemistry. Struct Bond 36:1–80

    Article  CAS  Google Scholar 

  61. Gillard RD, Mitchell PR (1970) The absolute configuration of transition metal complexes. Struct Bond 7:46–86

    Article  CAS  Google Scholar 

  62. Blauer G (1974) Optical activity of conjugated proteins. Struct Bond 18:69–129

    Article  CAS  Google Scholar 

  63. Bjerrum J (1941) Metal-ammine formation in aqueous solution. Haase, Copenhagen

    Google Scholar 

  64. Beck MT, Nagypál I (1990) Chemistry of complex equilibria. Horwood, Chichester

    Google Scholar 

  65. Rossotti FJC, Rossotti H (1961) The determination of stability constants. McGraw-Hill, New York

    Google Scholar 

  66. Dyrssen D, Ingri N, Sillen LG (1961) Pit-mapping - a general approach to computer refinement of stability constants. Acta Chem Scand 15:694–696

    Article  CAS  Google Scholar 

  67. Ingri N, Sillen LG (1964) High-speed computers as a supplement to graphical methods, IV. An ALGOL version of LETAGROP-VRID. Arkiv Kemi 23:97–121

    CAS  Google Scholar 

  68. Sayce IG (1968) Computer calculations of equilibrium constants of species present in mixtures of metal ions and complexing reagents. Talanta 22(12):1397–1421

    Article  Google Scholar 

  69. Ahrland S (1968) Thermodynamics of complex formation between hard and soft acceptors and donors. Struct Bond 5:118–149

    Article  CAS  Google Scholar 

  70. Ahrland S (1973) Thermodynamics of the stepwise formation of metal-ion complexes in aqueous solution. Struct Bond 15:167–188

    Article  CAS  Google Scholar 

  71. Williams RJP, Hale JD (1965) The classification of acceptors and donors in inorganic reactions. Struct Bond 6:249–281

    Google Scholar 

  72. Drago RS (1973) Quantitative evaluation and donor-acceptor interactions. Struct Bond 15:73–139

    Article  CAS  Google Scholar 

  73. Gutmann V, Mayer U (1972) Thermochemistry of the chemical bond. Struct Bond 10:127–151

    Article  CAS  Google Scholar 

  74. Guttmann V, Mayer U (1973) Redox properties: changes effected by co-ordination. Struct Bond 15:141–166

    Article  Google Scholar 

  75. Hudson RF (1966) Displacement reactions and the concept of soft and hard acids and bases. Struct Bond 1:221–223

    Article  CAS  Google Scholar 

  76. Irving HMN, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc 3192–3210

    Google Scholar 

  77. Calvin M, Melchior NC (1948) The stability of chelate complexes IV: the effect of the metal ion. J Am Chem Soc 70:3270–3273

    Article  CAS  Google Scholar 

  78. Williams RJP (1958) The stability of transition metal complexes. Trans Faraday Soc 26:182–188

    Google Scholar 

  79. Irving HM, Williams RJP (1948) The order of stability constants. Nature 162:746–747

    Article  CAS  Google Scholar 

  80. Morris DFC (1967) Ionic radii and enthalpies of hydration of ions. Struct Bond 4:63–82

    Article  Google Scholar 

  81. Schwarzenbach G (1952) Der Chelateffekt. Helv Chim Acta 35:2344–2359

    Article  CAS  Google Scholar 

  82. Cabinness DK, Margerum DW (1969) Macrocyclic effect on the stability of copper(II) tetramine complexes. J Am Chem Soc 91:6540–6541

    Article  Google Scholar 

  83. Lindoy LF (1990) The chemistry of macrocyclic ligand complexes. Cambridge University Press, Cambridge

    Google Scholar 

  84. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  85. Truter MR (1973) Structures of organic complexes with alkali metal ions. Struct Bond 16:71–111

    Article  CAS  Google Scholar 

  86. Winkler R (1972) Kinetics and mechanism of alkali metal complex formation in solution. Struct Bond 10:1–24

    Article  CAS  Google Scholar 

  87. Lehn J-M (1973) Design of organic complexing agents strategies towards properties. Struct Bond 16:1–69

    Article  CAS  Google Scholar 

  88. Simon W, Morf WE, Meier PCH (1973) Specificity for alkali and alkaline earth cations of synthetic and naturally organic complexing agents in membranes. Struct Bond 16:113–160

    Article  CAS  Google Scholar 

  89. Siegel FL (1973) Calcium binding proteins. Struct Bond 17:221–268

    Article  CAS  Google Scholar 

  90. Leigh GJ, Winterton N (2002) Modern co-ordination chemistry – the legacy of Joseph Chatt. Royal Society of Chemistry, Cambridge

    Google Scholar 

  91. Chatt J (1962) Tilden lecture: hydrido and related organic complexes of the transition metals. Proc Chem Soc 318–326

    Google Scholar 

  92. Ahrland S, Chatt J, Davies NR (1958) The relative affinities of ligand atoms for acceptor molecules and ions. Quart Rev 12:265–276

    Article  CAS  Google Scholar 

  93. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  94. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Springer, Heidelberg

    Book  Google Scholar 

  95. Drago RS, Wong N, Bilgrien C, Vogel C (1987) E and C parameters from Hammett substituent constants and use of E and C to understand cobalt-carbon bond energies. Inorg Chem 26:9–14

    Article  CAS  Google Scholar 

  96. Gutmann V (1978) The donor-acceptor approach to molecular interactions. Springer, Heidelberg

    Book  Google Scholar 

  97. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  98. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  99. Mayr H (2011) Farewell to the HSAB treatment of ambident reactivity. Angew Chem Int Ed 50:6470–6505

    Article  CAS  Google Scholar 

  100. Frausto da Silva JJR, Williams RJP (1976) The uptake of elements by biological systems. Struct Bond 29:67–121

    Article  CAS  Google Scholar 

  101. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science, Sausilito

    Google Scholar 

  102. Kraatz H-B, Metzler-Nolte N (2006) Concepts and models in bioinorganic chemistry. Wiley, New York

    Google Scholar 

  103. Bertini I, Gray HB, Stiefel EI, Valentine JS (2007) Biological inorganic chemistry. University Science, Sausilito

    Google Scholar 

  104. Kaim W, Schwederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, New York

    Google Scholar 

  105. Que L Jr (ed) (2000) Physical methods in bioinorganic chemistry. University Science, Sausilito

    Google Scholar 

  106. Thomson AJ, Williams RJP, Reslova F (1972) The chemistry of complexes related to cis- Pt(NH3)2Cl2: an antitumour drug. Struct Bond 11:1–46

    Article  CAS  Google Scholar 

  107. Sadler PJ (1976) The biological chemistry of gold: a metallo drug and heavy atom label with variable valency. Struct Bond 29:171–214

    Article  CAS  Google Scholar 

  108. Wood JM, Brown DG (1972) The chemistry of vitamin B12 enzymes. Struct Bond 11:47–105

    Article  CAS  Google Scholar 

  109. Bertini I, Luchninat C, Scozzafava A (1981) Carbonic anhydrase: an insight into the zinc binding site and into the active site and into the active cavity through metal substitution. Struct Bond 48:45–91

    Article  CAS  Google Scholar 

  110. Cheh AM, Neilands JP (1976) The δ-aminovulinte dehdratases: molecular and environmental properties. Struct Bond 29:123–169

    Article  CAS  Google Scholar 

  111. Livorness J, Smith T (1982) The role of manganese in photosynthesis. Struct Bond 48:11–44

    Google Scholar 

  112. Maggiora GM, Ingraham LL (1967) Chlorophyll triplet states. Struct Bond 2:126–159

    Article  CAS  Google Scholar 

  113. Rüdiger W (1980) Phytochrome, a light receptor of plant photomorphogenesis. Struct Bond 40:101–140

    Article  Google Scholar 

  114. Bray RC, Swann JC (1972) Molybdenum containing enzyme. Struct Bond 11:107–144

    Article  CAS  Google Scholar 

  115. Kimura T (1968) Biochemical aspects of iron-sulfur linkage in non-heme iron proteins with special reference to “andrenodoxin”. Struct Bond 5:1–40

    Article  CAS  Google Scholar 

  116. Fee JA (1975) Copper proteins – a system containing the “blue” copper centre. Struct Bond 23:1–60

    Article  CAS  Google Scholar 

  117. Zumft WG (1976) The molecular basis of nitrogen fixation. Struct Bond 29:1–65

    Article  CAS  Google Scholar 

  118. Xavier AV, Moura JJ, Moura I (1981) Novel structures in iron sulfur proteins. Struct Bond 43:187–213

    Article  CAS  Google Scholar 

  119. Fuhrhop J-H (1974) The oxidation states and reversible redox reactions of metalloporphyrins. Struct Bond 18:1–67

    Article  CAS  Google Scholar 

  120. Xavier AV, Moura JJ, Moura I (1981) Novel structures in iron sulfur proteins. Struct Bond 40:101–140

    Google Scholar 

  121. Hill HAO, Roder A, Williams RJP (1970) The chemical nature and reactivity of cytochrome P-450. Struct Bond 8:123–151

    Article  CAS  Google Scholar 

  122. Neilands JB (1966) Naturally occurring non-porphyrin iron compounds. Struct Bond 1:59–1081

    Article  CAS  Google Scholar 

  123. Neilands JB (1972) Evolution of biological iron binding centres. Struct Bond 11:145–170

    Article  CAS  Google Scholar 

  124. Que L Jr (1980) Non-heme iron dioxygenases. Structure and mechanism. Struct Bond 40:39–72

    Article  CAS  Google Scholar 

  125. Schneider W (1975) Kinetics and mechanism of metalloporphyrin formation. Struct Bond 23:123–166

    Article  CAS  Google Scholar 

  126. Bayer E, Schretzmann P (1967) Reversible oxygenierung von metallkomplexen. Struct Bond 2:181–250

    Article  CAS  Google Scholar 

  127. Buchanan BB (1966) The chemistry and function of ferredoxin. Struct Bond 1:109–148

    Article  CAS  Google Scholar 

  128. Weissbluth M (1967) The physics of hemoglobin. Struct Bond 2:1–125

    Article  CAS  Google Scholar 

  129. Smith DW, Williams RJP (1970) The spectra of ferric haemes and haemoproteins. Struct Bond 7:1–45

    Article  CAS  Google Scholar 

  130. Trautwein A (1974) Mössbauer spectroscopy of heme proteins. Struct Bond 20:1–87

    Article  Google Scholar 

  131. Clarke MJ, Fackler PH (1982) The chemistry of technetium: towards improved diagnostic agents. Struct Bond 50:57–78

    Article  CAS  Google Scholar 

  132. Crichton RR (1973) Ferritin. Struct Bond 17:67–134

    Article  CAS  Google Scholar 

  133. Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements – the inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  134. Williams RJP (1970) The biochemistry of sodium, potassium, magnesium and calcium. Quart Rev 24:331–360

    Article  CAS  Google Scholar 

  135. Adrian DC (1986) Trace metals in the terrestrial environment. Springer, Heidelberg

    Book  Google Scholar 

  136. Lindskog S (1970) Cobalt(II) in metalloenzymes. A reporter of structure-function relationships. Struct Bond 8:153–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The editorial staff at the Springer offices in Heidelberg have made an enormous contribution to the success of the journal, and on behalf of all the editors past and present and contributors, I should like to thank them very much for their patience and professionalism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael P. Mingos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mingos, D.M.P. (2015). Structure and Bonding: The Early Days. In: Mingos, D. (eds) 50 Years of Structure and Bonding – The Anniversary Volume. Structure and Bonding, vol 172. Springer, Cham. https://doi.org/10.1007/430_2015_196

Download citation

Publish with us

Policies and ethics