Skip to main content

Progress in the Area of High Energy Density Materials

  • Chapter
  • First Online:
50 Years of Structure and Bonding – The Anniversary Volume

Part of the book series: Structure and Bonding ((STRUCTURE,volume 172))

Abstract

Great strides have been made in increasing performance and decreasing sensitivity in energetic materials since the first commercialization of nitroglycerine (NG) in the form of dynamite in 1867 by Alfred Nobel. However, the high energy manufacturers continue to rely on traditional chemicals to meet their needs. New energetic materials must be developed to extend their capabilities and handling capabilities. The new materials which have been prepared recently have led to new possibilities. Important advances have been made especially in the area of high-nitrogen compounds, organic difluoramine derivatives. Computational simulations have also led not only to a greater insight into the basic thermodynamics and kinetics of these materials but also their practical behavior in the field. This chapter summarizes new developments that have been achieved since Volume 126 of Structure and Bonding, which was published in 2007 and gave a comprehensive review of the field.

Since the book “High Energy Density Materials” was published in 2007 [Structure and Bonding, Vol. 125/2007: High Energy Density Compounds, T. M. Klapötke (vol. editor), D. M. P. Mingos (series editor), Springer, Berlin/Heidelberg, 2007], significant advances have been made especially in the area of high-nitrogen compounds, organic difluoramine derivatives, and computational simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNPA/F:

1:1 Mixture of bis(2,2-dinitropropyl) acetal and bis(2,2-dinitropropyl) formal

CBNT:

Carbonic dihydrazidinium bis[3-(5-nitroimino-1,2,4-triazolate)] DNAN dinitroanisole

FOX-7:

1,1-Diamino-2,2-dinitroethene

HMX:

Octogen

HNFX:

3,3,7,7-Tetrakis(difluoramino)octahydro-1,5-dinitro-1,5-diazocine

LLM-105:

2,6-Diamino-3,5-dinitropyrazine 1-oxide

NG:

Nitroglycerine

NTO:

Nitrotriazolinone

PrNQ:

Propyl nitroguanidine

RDX:

Hexogen

TKX-50:

Bis(hydroxylammonium) 5,5′-bitetrazolate 1,1′-dioxide

TNT:

Trinitrotoluene

References

  1. Gökçınar E, Klapötke TM, Bellamy AJ (2010) J Mol Struct (TheoChem) 953:18–23

    Article  Google Scholar 

  2. Bellamy AJ, Contini, AE, Andrews MRG (2009) New trends in research of energetic materials. In: Proceedings of the seminar, 12th, Pardubice, Czech Republic, April 1–3 (Pt. 2) pp 473–480

    Google Scholar 

  3. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2012) J Mater Chem 22(38):20418–20422

    Article  CAS  Google Scholar 

  4. Fischer N, Klapötke TM, Matecic MS, Stierstorfer J, Suceska M (2013) TKX-50, new trends in research of energetic materials, Part II, Czech Republic, pp 574–585

    Google Scholar 

  5. Golubev V, Klapötke TM, Stierstorfer J (2014) TKX-50 and MAD-X1 – a progress report, 40th international pyrotechnics seminar, Colorado Springs, CO, July 13–18

    Google Scholar 

  6. Klapötke TM (2015) Chemistry of high-energy materials, 3rd edn. de Gruyter, Berlin

    Book  Google Scholar 

  7. Wang R, Xu H, Guo Y, Sa R, Shreeve JM (2010) J Am Chem Soc 32:11904

    Article  Google Scholar 

  8. Chapman RD (2007) Struct Bond 125:123

    Article  CAS  Google Scholar 

  9. Ye C, Gao H, Shreeve JM (2007) J Fluor Chem 128:1410

    Article  CAS  Google Scholar 

  10. Chapman RD, Groshens TJ (2009) US Patent 7,563,889

    Google Scholar 

  11. Chapman RD, Groshens TJ (2009) US Patent 7,632,943

    Google Scholar 

  12. Chapman RD, Groshens TJ (2013) US Patent 8,444,783

    Google Scholar 

  13. Chapman RD, Welker MF, Kreutzberger CB (1998) J Org Chem 63:1566

    Article  CAS  Google Scholar 

  14. Chapman RD, Hollins RA (2011) US Patent 8,008,527

    Google Scholar 

  15. Chapman RD, Hollins RA, Groshens TJ, Thompson D, Schilling TJ, Wooldridge D, Cash PN, Jones TS, Ooi GT (2014) N,N-Dihaloamine explosives as harmful agent defeat materials. Technical report DTRA-TR-14-26. Defense Threat Reduction Agency, Fort Belvoir, VA. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA602478. Accessed 7 June 2015

  16. Kang L, Liu J, Zhang M, Liu H (2011) Huaxue Tuijinji Yu Gaofenzi Cailiao 9(5):93

    CAS  Google Scholar 

  17. Lawton EA, Cain EFC, Shefhan DF, Warner M (1961) J Inorg Nucl Chem 17:188

    Article  CAS  Google Scholar 

  18. Parker CO, Freeman JP (1970) Inorg Synth 12:307

    CAS  Google Scholar 

  19. Belter RK (2011) J Fluor Chem 132:961

    Article  CAS  Google Scholar 

  20. Belter RK (2012) J Fluor Chem 137:73

    Article  CAS  Google Scholar 

  21. Belter RK (2015) J Fluor Chem 175:110

    Article  CAS  Google Scholar 

  22. Zhang M, Liu H, Gao B, Zhang L, Kang L, Zhang K (2012) Hanneng Cailiao 20:314

    Google Scholar 

  23. Archibald TG, Manser GE, Immoos JE (1993) US Patent 5,272,249

    Google Scholar 

  24. Archibald TG, Manser GE, Immoos JE (1995) US Patent 5,420,311

    Google Scholar 

  25. McPake CB, Murray CB, Sandford G (2013) Aust J Chem 66:145

    Article  CAS  Google Scholar 

  26. Weck PF, Gobin C, Kim E, Pravica MG (2009) J Raman Spectrosc 40:964

    Article  CAS  Google Scholar 

  27. Erben MF, Padro JM, Willner H, Della Védova CO (2009) J Phys Chem A 113:13029

    Article  CAS  Google Scholar 

  28. Chapman RD (2012) US Patent 8,221,566

    Google Scholar 

  29. Li H, Wang W, Zhang L, Pan R (2013) Int Annu Conf ICT 44:40/1

    Google Scholar 

  30. Li H, Pan R, Wang W, Zhang L (2014) Propellants Explos Pyrotech 39:819

    Article  CAS  Google Scholar 

  31. Li H, Pan R, Wang W, Zhang L (2014) J Therm Anal Calorim 118:189

    Article  CAS  Google Scholar 

  32. Wang W, Li H, Zhang L, Pan R (2013) Int Annu Conf ICT 44:41/1

    Google Scholar 

  33. Fan XW, Ju XH (2007) J Comput Chem 29:505

    Article  CAS  Google Scholar 

  34. Ju XH, Wang ZY, Xiao HM (2007) J Chin Chem Soc 54:313 (Taipei, Taiwan)

    Article  CAS  Google Scholar 

  35. Fan XW, Ju XH, Xia QY, Xiao HM (2008) J Hazard Mater 151:255

    Article  CAS  Google Scholar 

  36. Campanelli AR, Domenicano A, Ramondo F (2011) Struct Chem 22:449

    Article  CAS  Google Scholar 

  37. Campanelli AR, Domenicano A, Hnyk D (2015) J Phys Chem A 119:205

    Article  CAS  Google Scholar 

  38. Liu Y, Wang L, Wang G, Du H, Gong X (2012) J Mol Model 18:1561

    Article  CAS  Google Scholar 

  39. Ueda K, Takahashi O (2012) J Electron Spectrosc Relat Phenom 185:301

    Article  CAS  Google Scholar 

  40. Wang G, Gong X, Xiao H (2013) Adv Mater Res 742:202 (Durnten-Zurich, Switz)

    Article  CAS  Google Scholar 

  41. Fan XW, Ju XH, Xiao HM (2008) J Hazard Mater 156:342

    Article  CAS  Google Scholar 

  42. Wei T, Zhu W, Zhang X, Li YF, Xiao H (2009) J Phys Chem A 113:9404

    Article  CAS  Google Scholar 

  43. Li YF, Fan XW, Wang ZY, Ju XH (2009) J Mol Struct (TheoChem) 896:96

    Article  CAS  Google Scholar 

  44. Li YF, Wang ZY, Ju XH, Fan XW (2009) J Mol Struct (TheoChem) 907:29

    Article  CAS  Google Scholar 

  45. Zhang JJ, Gao HW, Wei T, Wang CJ (2010) Wuli Huaxue Xuebao 26:3337

    CAS  Google Scholar 

  46. Zhang X, Zhu W, Xiao H (2010) Int J Quantum Chem 110:1549

    Article  CAS  Google Scholar 

  47. Wei T, Zhu W, Zhang J, Xiao H (2010) J Hazard Mater 179:581

    Article  CAS  Google Scholar 

  48. Zhang X, Zhu W, Wei T, Zhang C, Xiao H (2010) J Phys Chem C 114:13142

    Article  CAS  Google Scholar 

  49. Zhang X, Zhu W, Xiao H (2010) J Phys Chem A 114:603

    Article  CAS  Google Scholar 

  50. Liu Y, Gong X, Wang L, Wang G, Xiao H (2011) J Phys Chem A 115:1754

    Article  CAS  Google Scholar 

  51. Zhu W, Zhang C, Wei T, Xiao H (2011) J Comput Chem 32:2298

    Article  CAS  Google Scholar 

  52. Wang F, Du H, Zhang J, Gong X (2011) J Phys Chem A 115:11852

    Article  CAS  Google Scholar 

  53. Wang F, Du H, Liu H, Gong X (2012) Chem Asian J 7:2577

    Article  CAS  Google Scholar 

  54. Wang F, Zhang Q, Gong X, Li H, Zhao Z (2014) Struct Chem 25:1785

    Article  CAS  Google Scholar 

  55. Pan Y, Zhu W, Xiao H (2012) J Mol Model 18:3125

    Article  CAS  Google Scholar 

  56. Pan Y, Li J, Cheng B, Zhu W, Xiao H (2012) Comput Theor Chem 992:110

    Article  CAS  Google Scholar 

  57. Liu H, Wang F, Wang G, Gong X (2013) Mol Simul 39:123

    Article  CAS  Google Scholar 

  58. Liu H, Wang F, Wang GX, Gong XD (2013) J Phys Org Chem 26:30

    Article  CAS  Google Scholar 

  59. Liu Z, Wu Q, Zhu W, Xiao H (2013) J Phys Org Chem 26:939

    Article  CAS  Google Scholar 

  60. Shao Y, Zhu W, Xiao H (2013) J Mol Graph Model 40:54

    Article  CAS  Google Scholar 

  61. Wu Q, Zhu W, Xiao H (2013) J Chem Eng Data 58:2748

    Article  CAS  Google Scholar 

  62. Yan T, Sun G, Chi W, Li L, Li B, Wu H (2013) C R Chim 16:765

    Article  CAS  Google Scholar 

  63. Liu H, Gong XD (2013) Struct Chem 24:471

    Article  CAS  Google Scholar 

  64. Shao Y, Pan Y, Wu Q, Zhu W, Li J, Cheng B, Xiao H (2013) Struct Chem 24:1429

    Article  CAS  Google Scholar 

  65. Lian P, Lai WP, Wang BZ, Wang XJ, Luo YF (2014) Asian J Chem 26:2357

    CAS  Google Scholar 

  66. Yang J, Yan H, Wang G, Zhang X, Wang T, Gong X (2014) J Mol Model 20:1

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the Ludwig Maximilian University of Munich (LMU), the US Army Research Laboratory (ARL), the Armament Research, Development and Engineering Center (ARDEC), the Office of Naval Research (ONR) under grant no. ONR.N00014-12-1-0538, and the Bundeswehr–Wehrtechnische Dienststelle für Waffen und Munition (WTD 91) under grant no. E/E91S/FC015/CF049 is gratefully acknowledged. The authors acknowledge collaborations with Dr. Muhamed Suceska (Brodarski Institut, Croatia) in the development of new computational codes to predict the detonation and propulsion parameters of novel explosives. We are indebted to and thank Drs. Betsy M. Rice and Ed Byrd (ARL, Aberdeen Proving Ground, MD) and Dr. Anthony Bellamy for many inspired discussions and their help preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Klapötke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klapötke, T.M., Chapman, R.D. (2015). Progress in the Area of High Energy Density Materials. In: Mingos, D. (eds) 50 Years of Structure and Bonding – The Anniversary Volume. Structure and Bonding, vol 172. Springer, Cham. https://doi.org/10.1007/430_2015_190

Download citation

Publish with us

Policies and ethics