Skip to main content

Time-Gated Luminescence Acquisition for Biochemical Sensing: miRNA Detection

  • Chapter
  • First Online:
Fluorescence in Industry

Abstract

Luminescence emission is a multidimensional phenomenon comprising a time-domain layer defined by its excited-state kinetics and corresponding lifetime, which is specific to each luminophore and depends on environmental conditions. This feature allows for the discrimination of luminescence signals from species with a similar spectral profile but different lifetimes by time-gating (TG) the acquisition of luminescence. This approach represents an efficient tool for removing unwanted, usually short-lived, signals from scattered light and fluorescence interferents using luminophores with a long lifetime. Due to the emergence of time-resolved techniques using rapid excitation and acquisition methods (i.e. pulsed lasers and single-photon timing acquisition) and new long-lifetime luminophores (i.e. acridones, lanthanide complexes, nanoparticles, etc.), TG analyses can be easily applied to relevant chemical and biochemical issues. The successful application of TG to important biomedical topics has attracted the attention of the R&D industry due to its potential in the development and patenting of new probes, methods and techniques for drug discovery, immunoassays, biomarker discovery and biomolecular interactions, etc. Here, we review the technological efforts of innovative companies in the application of TG-based techniques.

Among the many currently available biomarkers, circulating microRNAs (miRNAs) have received attention since they are highly specific and sensitive to different pathological stages of numerous diseases and easily accessible from biological fluids. qPCR is a powerful and routine technique used for the detection and quantification of miRNAs, but qPCR may introduce numerous artefacts and low reproducibility during the amplification process, particularly using complex samples. Thus, due to the efficiency of TG in separating short-lived sources of fluorescence common in biological fluids, TG is an ideal approach for the direct detection of miRNAs in liquid biopsies. Recently, great efforts in the use of TG have been achieved. Our contribution is the proposal of a direct detection approach using TG-imaging with single-nucleobase resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy3rd edn. Springer, New York. https://doi.org/10.1007/978-0-387-46312-4

    Book  Google Scholar 

  2. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. Wiley, Weinheim. https://doi.org/10.1002/9783527650002

    Book  Google Scholar 

  3. Williams RT, Bridges JW (1964) Fluorescence of solutions: a review. J Clin Pathol 17:371–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Demas JN (1983) Excited state lifetime measurements. Academic, New York

    Google Scholar 

  5. O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic, New York

    Google Scholar 

  6. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684. https://doi.org/10.1021/cr900343z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schneckenburger H (1985) Fluorescence techniques in biotechnology. Trends Biotechnol 3:257–261. https://doi.org/10.1016/0167-7799(85)90025-3

    Article  CAS  Google Scholar 

  8. Schneckenburger H, Seidlitz HK, Eberz J (1988) New trends in photobiology. J Photochem Photobiol B 2:1–19. https://doi.org/10.1016/1011-1344(88)85033-4

    Article  CAS  PubMed  Google Scholar 

  9. Lehn JM (1978) Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc Chem Res 11:49–57. https://doi.org/10.1021/ar50122a001

    Article  CAS  Google Scholar 

  10. Nobelprize.org. Nobel Media AB (2014) Jean-Marie Lehn - facts. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1987/lehn-facts.html. Accessed 28 Dec 2017

  11. Sabbatini N, Guardigli M, Lehn J-M (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228. https://doi.org/10.1016/0010-8545(93)85056-A

    Article  CAS  Google Scholar 

  12. Dickson EF, Pollak A, Diamandis EP (1995) Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. Pharmacol Ther 66:207–235. https://doi.org/10.1016/0163-7258(94)00078-H

    Article  CAS  PubMed  Google Scholar 

  13. Gudgin Dickson EF, Pollak A, Diamandis EP (1995) Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J Photochem Photobiol B 27:3–19. https://doi.org/10.1016/1011-1344(94)07086-4

    Article  CAS  Google Scholar 

  14. Mathis G, Lehn JM (1986) Macropolycyclic complexes of rare earth metals and application as fluorescent labels. Patent number: EP0180492 A1

    Google Scholar 

  15. Lehn JM, Mathis G, Alpha B, Deschenaux R, Jolu E (1996) Rare earth cryptates, processes for their preparation, synthesis intermediates and application as fluorescent tracers. Patent number: US5534622 A

    Google Scholar 

  16. Siitari H, Hemmilä I, Soini E, Lövgren T, Koistinen V (1983) Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature 301:258–260. https://doi.org/10.1038/301258a0

    Article  CAS  PubMed  Google Scholar 

  17. Pettersson K, Siitari H, Hemmilä I, Soini E, Lövgren T, Hänninen V, Tanner P, Stenman UH (1983) Time-resolved fluoroimmunoassay of human choriogonadotropin. Clin Chem 29:60–64

    CAS  PubMed  Google Scholar 

  18. Suonpää MU, Lavi JT, Hemmilä IA, Lövgren TN (1985) A new sensitive assay of human alpha-fetoprotein using time-resolved fluorescence and monoclonal antibodies. Clin Chim Acta 145:341–348. https://doi.org/10.1016/0009-8981(85)90044-0

    Article  PubMed  Google Scholar 

  19. Lövgren TNE (1987) Time-resolved fluoroimmunoassay of steroid hormones. J Steroid Biochem 27:47–51. https://doi.org/10.1016/0022-4731(87)90293-7

    Article  PubMed  Google Scholar 

  20. Bertoft E, Eskola JU, Näntö V, Lövgren T (1984) Competitive solid-phase immunoassay of testosterone using time-resolved fluorescence. FEBS Lett 173:213–216. https://doi.org/10.1016/0014-5793(84)81049-2

    Article  CAS  PubMed  Google Scholar 

  21. Beverloo HB, van Schadewijk A, van Gelderen-Boele S, Tanke HJ (1990) Inorganic phosphors as new luminescent labels for immunocytochemistry and time-resolved microscopy. Cytometry 11:784–792. https://doi.org/10.1002/cyto.990110704

    Article  CAS  PubMed  Google Scholar 

  22. Beverloo HB, van Schadewijk A, Bonnet J, van der Geest R, Runia R, Verwoerd NP, Vrolijk J, Ploem JS, Tanke HJ (1992) Preparation and microscopic visualization of multicolor luminescent immunophosphors. Cytometry 13:561–570. https://doi.org/10.1002/cyto.990130603

    Article  CAS  PubMed  Google Scholar 

  23. Marriott G, Clegg RM, Arndt-Jovin DJ, Jovin TM (1991) Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys J 60:1374–1387. https://doi.org/10.1016/S0006-3495(91)82175-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marriott G, Heidecker M, Diamandis EP, Yan-Marriott Y (1994) Time-resolved delayed luminescence image microscopy using an europium ion chelate complex. Biophys J 67:957–965. https://doi.org/10.1016/S0006-3495(94)80597-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cubeddu R, Taroni P, Valentini G, Canti G (1992) Use of time-gated fluorescence imaging for diagnosis in biomedicine. J Photochem Photobiol B 12:109–113. https://doi.org/10.1016/1011-1344(92)85023-N

    Article  CAS  PubMed  Google Scholar 

  26. Cubeddu R (1993) Time-gated imaging system for tumor diagnosis. Opt Eng 32:320. https://doi.org/10.1117/12.60754

    Article  Google Scholar 

  27. Cubeddu R, Taroni P, Valentini G, Ghetti F, Lenci F (1993) Time-gated fluorescence imaging of Blepharisma red and blue cells. Biochim Biophys Acta 1143:327–331. https://doi.org/10.1016/0005-2728(93)90204-S

    Article  CAS  Google Scholar 

  28. Seveus L, Väisälä M, Syrjänen S, Sandberg M, Kuusisto A, Harju R, Salo J, Hemmilä I, Kojola H, Soini E (1992) Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytometry 13:329–338. https://doi.org/10.1002/cyto.990130402

    Article  CAS  PubMed  Google Scholar 

  29. Schneckenburger H, Feyh J, Götz A, Jocham D, Unsöld E (1986) Time-resolved fluorescence of hematoporphyrin derivative in tumor cells and animal tissues. In: Waidelich W, Kiefhaber P (eds) Laser/optoelectronics in medicine/laser/optoelektronik in der medizin. Springer, Berlin, pp 70–73

    Chapter  Google Scholar 

  30. Schneckenburger H, Koenig K, Dienersberger T, Hahn R (1994) Time-gated microscopic imaging and spectroscopy. In: Fercher AF, Lewis A, Podbielska H, Schneckenburger H, Wilson T (eds) Microscopy, holography, and interferometry in biomedicine. SPIE, Budapest, p 124

    Chapter  Google Scholar 

  31. Koenig K (1994) Time-gated microscopic imaging and spectroscopy in medical diagnosis and photobiology [also Erratum 33(11)3828(Nov1994)]. Opt Eng 33:2600. https://doi.org/10.1117/12.177101

    Article  Google Scholar 

  32. Kohl M, Neukammer J, Sukowski U, Rinneberg H, Wöhrle D, Sinn HJ, Friedrich EA (1993) Delayed observation of laser-induced fluorescence for imaging of tumors. Appl Phys B Lasers Opt 56:131–138. https://doi.org/10.1007/BF00332192

    Article  Google Scholar 

  33. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89:1271–1275. https://doi.org/10.1073/pnas.89.4.1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M (1992) Fluorescence lifetime imaging. Anal Biochem 202:316–330. https://doi.org/10.1016/0003-2697(92)90112-K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale. Biophys Chem 48:221–239. https://doi.org/10.1016/0301-4622(93)85012-7

    Article  CAS  Google Scholar 

  36. Becker W (2012) Fluorescence lifetime imaging--techniques and applications. J Microsc 247:119–136. https://doi.org/10.1111/j.1365-2818.2012.03618.x

    Article  CAS  PubMed  Google Scholar 

  37. Birks JB, Dyson DJ, Munro IH (1963) ‘Excimer’ fluorescence. II. Lifetime studies of pyrene solutions. Proc R Soc A 275:575–588. https://doi.org/10.1098/rspa.1963.0187

    Article  CAS  Google Scholar 

  38. Smith JA, West RM, Allen M (2004) Acridones and quinacridones: novel fluorophores for fluorescence lifetime studies. J Fluoresc 14:151–171

    Article  CAS  PubMed  Google Scholar 

  39. Boettcher A, Gradoux N, Lorthiois E, Brandl T, Orain D, Schiering N, Cumin F, Woelcke J, Hassiepen U (2014) Fluorescence lifetime-based competitive binding assays for measuring the binding potency of protease inhibitors in vitro. J Biomol Screen 19:870–877. https://doi.org/10.1177/1087057114521295

    Article  CAS  PubMed  Google Scholar 

  40. Maltman BA, Dunsmore CJ, Couturier SCM, Tirnaveanu AE, Delbederi Z, McMordie RAS, Naredo G, Ramage R, Cotton G (2010) 9-Aminoacridine peptide derivatives as versatile reporter systems for use in fluorescence lifetime assays. Chem Commun 46:6929–6931. https://doi.org/10.1039/c0cc01901a

    Article  CAS  Google Scholar 

  41. Ruedas-Rama MJ, Orte A, Hall EAH, Alvarez-Pez JM, Talavera EM (2012) A chloride ion nanosensor for time-resolved fluorimetry and fluorescence lifetime imaging. Analyst 137:1500–1508. https://doi.org/10.1039/c2an15851e

    Article  CAS  PubMed  Google Scholar 

  42. Bora I, Bogh SA, Rosenberg M, Santella M, Sørensen TJ, Laursen BW (2016) Diazaoxatriangulenium: synthesis of reactive derivatives and conjugation to bovine serum albumin. Org Biomol Chem 14:1091–1101. https://doi.org/10.1039/c5ob02293b

    Article  CAS  PubMed  Google Scholar 

  43. Sørensen TJ, Thyrhaug E, Szabelski M, Luchowski R, Gryczynski I, Gryczynski Z, Laursen BW (2013) Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay. Methods Appl Fluoresc 1:025001. https://doi.org/10.1088/2050-6120/1/2/025001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wawrzinek R, Ziomkowska J, Heuveling J, Mertens M, Herrmann A, Schneider E, Wessig P (2013) DBD dyes as fluorescence lifetime probes to study conformational changes in proteins. Chemistry 19:17349–17357. https://doi.org/10.1002/chem.201302368

    Article  CAS  PubMed  Google Scholar 

  45. Nau WM, Greiner G, Rau H, Wall J, Olivucci M, Scaiano JC (1999) Fluorescence of 2,3-diazabicyclo[2.2.2]oct-2-ene revisited: solvent-induced quenching of the n,π*-excited state by an aborted hydrogen atom transfer. J Phys Chem A 103:1579–1584. https://doi.org/10.1021/jp984303f

    Article  CAS  Google Scholar 

  46. Petersen KJ, Peterson KC, Muretta JM, Higgins SE, Gillispie GD, Thomas DD (2014) Fluorescence lifetime plate reader: resolution and precision meet high-throughput. Rev Sci Instrum 85:113101. https://doi.org/10.1063/1.4900727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patsenker LD, Tatarets AL, Povrozin YA, Terpetschnig EA (2011) Long-wavelength fluorescence lifetime labels. Bioanal Rev 3:115–137. https://doi.org/10.1007/s12566-011-0025-2

    Article  Google Scholar 

  48. Patsenker LD, Yermolenko IG, Fedyunyaeva IA, Obukhova YN, Semenova ON, Terpetschnig EA (2011) Highly water-soluble, cationic luminescent labels. US 2011/0143387A1. https://patents.google.com/patent/US20110143387A1/en?oq=US+2011%2f0143387A1

  49. Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40:2508–2524. https://doi.org/10.1039/c0cs00114g

    Article  CAS  PubMed  Google Scholar 

  50. Ma D-L, He H-Z, Leung K-H, Chan DS-H, Leung C-H (2013) Bioactive luminescent transition-metal complexes for biomedical applications. Angew Chem Int Ed Engl 52:7666–7682. https://doi.org/10.1002/anie.201208414

    Article  CAS  PubMed  Google Scholar 

  51. Browne WR, Coates CG, Brady C, Matousek P, Towrie M, Botchway SW, Parker AW, Vos JG, McGarvey JJ (2003) Isotope effects on the picosecond time-resolved emission spectroscopy of tris(2,2′-bipyridine)ruthenium (II). J Am Chem Soc 125:1706–1707. https://doi.org/10.1021/ja0289346

    Article  CAS  PubMed  Google Scholar 

  52. Terpetschnig E, Dattelbaum JD, Szmacinski H, Lakowicz JR (1997) Synthesis and spectral characterization of a thiol-reactive long-lifetime Ru(II) complex. Anal Biochem 251:241–245. https://doi.org/10.1006/abio.1997.2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heffern MC, Matosziuk LM, Meade TJ (2014) Lanthanide probes for bioresponsive imaging. Chem Rev 114:4496–4539. https://doi.org/10.1021/cr400477t

    Article  CAS  PubMed  Google Scholar 

  54. Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227. https://doi.org/10.1039/b905604c

    Article  CAS  PubMed  Google Scholar 

  55. Silvi S, Credi A (2015) Luminescent sensors based on quantum dot-molecule conjugates. Chem Soc Rev 44:4275–4289. https://doi.org/10.1039/c4cs00400k

    Article  CAS  PubMed  Google Scholar 

  56. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834. https://doi.org/10.1039/c4cs00532e

    Article  CAS  PubMed  Google Scholar 

  57. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl 49:6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  PubMed  Google Scholar 

  58. Dekaliuk MO, Viagin O, Malyukin YV, Demchenko AP (2014) Fluorescent carbon nanomaterials: “quantum dots” or nanoclusters? Phys Chem Chem Phys 16:16075–16084. https://doi.org/10.1039/c4cp00138a

    Article  CAS  PubMed  Google Scholar 

  59. Joo J, Liu X, Kotamraju VR, Ruoslahti E, Nam Y, Sailor MJ (2015) Gated luminescence imaging of silicon nanoparticles. ACS Nano 9:6233–6241. https://doi.org/10.1021/acsnano.5b01594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155. https://doi.org/10.1021/cb700248m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soini AE, Seveus L, Meltola NJ, Papkovsky DB, Soini E (2002) Phosphorescent metalloporphyrins as labels in time-resolved luminescence microscopy: effect of mounting on emission intensity. Microsc Res Tech 58:125–131. https://doi.org/10.1002/jemt.10129

    Article  CAS  PubMed  Google Scholar 

  62. Finikova OS, Cheprakov AV, Vinogradov SA (2005) Synthesis and luminescence of soluble meso-unsubstituted tetrabenzo- and tetranaphtho[2,3]porphyrins. J Org Chem 70:9562–9572. https://doi.org/10.1021/jo051580r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Papkovsky DB, O’Riordan TC (2005) Emerging applications of phosphorescent metalloporphyrins. J Fluoresc 15:569–584. https://doi.org/10.1007/s10895-005-2830-x

    Article  CAS  PubMed  Google Scholar 

  64. Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110:2729–2755. https://doi.org/10.1021/cr900362e

    Article  CAS  PubMed  Google Scholar 

  65. Moore EG, Samuel APS, Raymond KN (2009) From antenna to assay: lessons learned in lanthanide luminescence. Acc Chem Res 42:542–552. https://doi.org/10.1021/ar800211j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mohamadi A, Miller LW (2016) Brightly luminescent and kinetically inert lanthanide bioprobes based on linear and preorganized chelators. Bioconjug Chem 27(10):2540–2548. https://doi.org/10.1021/acs.bioconjchem.6b00473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47. https://doi.org/10.1016/j.ccr.2014.10.013

    Article  CAS  Google Scholar 

  68. Wang Q, Nchimi Nono K, Syrjänpää M, Charbonnière LJ, Hovinen J, Härmä H (2013) Stable and highly fluorescent europium(III) chelates for time-resolved immunoassays. Inorg Chem 52:8461–8466. https://doi.org/10.1021/ic400384f

    Article  CAS  PubMed  Google Scholar 

  69. Sund H, Blomberg K, Meltola N, Takalo H (2017) Design of novel, water soluble and highly luminescent europium labels with potential to enhance immunoassay sensitivities. Molecules 22(10):E1807. https://doi.org/10.3390/molecules22101807

    Article  CAS  PubMed  Google Scholar 

  70. Delbianco M, Sadovnikova V, Bourrier E, Mathis G, Lamarque L, Zwier JM, Parker D (2014) Bright, highly water-soluble triazacyclononane europium complexes to detect ligand binding with time-resolved FRET microscopy. Angew Chem Int Ed Engl 53:10718–10722. https://doi.org/10.1002/anie.201406632

    Article  CAS  PubMed  Google Scholar 

  71. Butler SJ, Delbianco M, Lamarque L, McMahon BK, Neil ER, Pal R, Parker D, Walton JW, Zwier JM (2015) EuroTracker® dyes: design, synthesis, structure and photophysical properties of very bright europium complexes and their use in bioassays and cellular optical imaging. Dalton Trans 44:4791–4803. https://doi.org/10.1039/c4dt02785j

    Article  CAS  PubMed  Google Scholar 

  72. Orte A, Alvarez-Pez JM, Ruedas-Rama MJ (2013) Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS Nano 7:6387–6395. https://doi.org/10.1021/nn402581q

    Article  CAS  PubMed  Google Scholar 

  73. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65:1933–1950. https://doi.org/10.1016/j.addr.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  74. Liu J-H, Cao L, LeCroy GE, Wang P, Meziani MJ, Dong Y, Liu Y, Luo PG, Sun Y-P (2015) Carbon “quantum” dots for fluorescence labeling of cells. ACS Appl Mater Interfaces 7:19439–19445. https://doi.org/10.1021/acsami.5b05665

    Article  CAS  PubMed  Google Scholar 

  75. Ortega-Liebana MC, Encabo-Berzosa MM, Ruedas-Rama MJ, Hueso JL (2017) Nitrogen-induced transformation of vitamin C into multifunctional up-converting carbon nanodots in the visible-NIR range. Chemistry 23:3067–3073. https://doi.org/10.1002/chem.201604216

    Article  CAS  PubMed  Google Scholar 

  76. Eda G, Lin Y-Y, Mattevi C, Yamaguchi H, Chen H-A, Chen I-S, Chen C-W, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509. https://doi.org/10.1002/adma.200901996

    Article  CAS  PubMed  Google Scholar 

  77. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024. https://doi.org/10.1038/nchem.907

    Article  CAS  PubMed  Google Scholar 

  78. Wang F, Gu Z, Lei W, Wang W, Xia X, Hao Q (2014) Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sensors Actuators B Chem 190:516–522. https://doi.org/10.1016/j.snb.2013.09.009

    Article  CAS  Google Scholar 

  79. Röding M, Bradley SJ, Nydén M, Nann T (2014) Fluorescence lifetime analysis of graphene quantum dots. J Phys Chem C 118:30282–30290. https://doi.org/10.1021/jp510436r

    Article  CAS  Google Scholar 

  80. Vaijayanthimala V, Cheng P-Y, Yeh S-H, Liu K-K, Hsiao C-H, Chao J-I, Chang H-C (2012) The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33:7794–7802. https://doi.org/10.1016/j.biomaterials.2012.06.084

    Article  CAS  PubMed  Google Scholar 

  81. Faklaris O, Garrot D, Joshi V, Druon F, Boudou J-P, Sauvage T, Georges P, Curmi PA, Treussart F (2008) Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4:2236–2239. https://doi.org/10.1002/smll.200800655

    Article  CAS  PubMed  Google Scholar 

  82. Kuo Y, Hsu T-Y, Wu Y-C, Chang H-C (2013) Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34:8352–8360. https://doi.org/10.1016/j.biomaterials.2013.07.043

    Article  CAS  PubMed  Google Scholar 

  83. Gu L, Hall DJ, Qin Z, Anglin E, Joo J, Mooney DJ, Howell SB, Sailor MJ (2013) In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun 4:2326. https://doi.org/10.1038/ncomms3326

    Article  CAS  PubMed  Google Scholar 

  84. Bryan JD (2005) Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications. In: Karlin KD (ed) Progress in inorganic chemistry. Wiley, Hoboken, pp 47–126

    Chapter  Google Scholar 

  85. Wu P, Yan X-P (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521. https://doi.org/10.1039/c3cs60017c

    Article  CAS  PubMed  Google Scholar 

  86. Del Rosal B, Ortgies DH, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez EM (2016) Overcoming autofluorescence: long-lifetime infrared nanoparticles for time-gated in vivo imaging. Adv Mater 28:10188–10193. https://doi.org/10.1002/adma.201603583

    Article  CAS  PubMed  Google Scholar 

  87. Tian L, Dai Z, Zhang L, Zhang R, Ye Z, Wu J, Jin D, Yuan J (2012) Preparation and time-gated luminescence bioimaging applications of long wavelength-excited silica-encapsulated europium nanoparticles. Nanoscale 4:3551–3557. https://doi.org/10.1039/c2nr30233k

    Article  CAS  PubMed  Google Scholar 

  88. Song C, Ye Z, Wang G, Jin D, Yuan J, Guan Y, Piper J (2009) Preparation and time-gated luminescence bioimaging application of ruthenium complex covalently bound silica nanoparticles. Talanta 79:103–108. https://doi.org/10.1016/j.talanta.2009.03.018

    Article  CAS  PubMed  Google Scholar 

  89. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143. https://doi.org/10.1016/0003-2697(84)90782-6

    Article  CAS  PubMed  Google Scholar 

  90. Maple PA, Jones CS, Andrews NJ (2001) Time resolved fluorometric immunoassay, using europium labelled antihuman IgG, for the detection of human tetanus antitoxin in serum. J Clin Pathol 54:812–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qin Q, Christiansen M, Lövgren T, Nørgaard-Pedersen B, Pettersson K (1997) Dual-label time-resolved immunofluorometric assay for simultaneous determination of pregnancy-associated plasma protein A and free beta-subunit of human chorionic gonadotrophin. J Immunol Methods 205:169–175

    Article  CAS  PubMed  Google Scholar 

  92. Bookout JT, Joaquim TR, Magin KM, Rogan GJ, Lirette RP (2000) Development of a dual-label time-resolved fluorometric immunoassay for the simultaneous detection of two recombinant proteins in potato. J Agric Food Chem 48:5868–5873. https://doi.org/10.1021/jf000841p

    Article  CAS  PubMed  Google Scholar 

  93. Mitrunen K, Pettersson K, Piironen T, Björk T, Lilja H, Lövgren T (1995) Dual-label one-step immunoassay for simultaneous measurement of free and total prostate-specific antigen concentrations and ratios in serum. Clin Chem 41:1115–1120

    CAS  PubMed  Google Scholar 

  94. Zhu L, Leinonen J, Zhang W-M, Finne P, Stenman U-H (2003) Dual-label immunoassay for simultaneous measurement of prostate-specific antigen (PSA)-alpha1-antichymotrypsin complex together with free or total PSA. Clin Chem 49:97–103. https://doi.org/10.1373/49.1.97

    Article  CAS  PubMed  Google Scholar 

  95. Degorce F, Card A, Soh S, Trinquet E, Knapik GP, Xie B (2009) HTRF: a technology tailored for drug discovery - a review of theoretical aspects and recent applications. Curr Chem Genomics 3:22–32. https://doi.org/10.2174/1875397300903010022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bazin H, Trinquet E, Mathis G (2002) Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. J Biotechnol 82:233–250

    CAS  PubMed  Google Scholar 

  97. Mabile M, Mathis G, Jolu EJP, Pouyat D, Dumont C (1996) Method of measuring the luminescence emitted in a luminescent assay. Patent number: US5527684 A

    Google Scholar 

  98. Hildebrandt N, Charbonnière LJ, Beck M, Ziessel RF, Löhmannsröben H-G (2005) Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay. Angew Chem Int Ed Engl 44:7612–7615. https://doi.org/10.1002/anie.200501552

    Article  CAS  PubMed  Google Scholar 

  99. Charbonnière LJ, Hildebrandt N, Ziessel RF, Löhmannsröben H-G (2006) Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy. J Am Chem Soc 128:12800–12809. https://doi.org/10.1021/ja062693a

    Article  CAS  PubMed  Google Scholar 

  100. Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, Armstrong A, Dawson PE, Hildebrandt N, Medintz IL (2012) Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. J Am Chem Soc 134:1876–1891. https://doi.org/10.1021/ja210162f

    Article  CAS  PubMed  Google Scholar 

  101. Jia Y, Quinn CM, Clabbers A, Talanian R, Xu Y, Wishart N, Allen H (2006) Comparative analysis of various in vitro COT kinase assay formats and their applications in inhibitor identification and characterization. Anal Biochem 350:268–276. https://doi.org/10.1016/j.ab.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  102. Schröter T, Minond D, Weiser A, Dao C, Habel J, Spicer T, Chase P, Baillargeon P, Scampavia L, Schürer S, Chung C, Mader C, Southern M, Tsinoremas N, LoGrasso P, Hodder P (2008) Comparison of miniaturized time-resolved fluorescence resonance energy transfer and enzyme-coupled luciferase high-throughput screening assays to discover inhibitors of Rho-kinase II (ROCK-II). J Biomol Screen 13:17–28. https://doi.org/10.1177/1087057107310806

    Article  CAS  PubMed  Google Scholar 

  103. Gracias V, Ji Z, Akritopoulou-Zanze I, Abad-Zapatero C, Huth JR, Song D, Hajduk PJ, Johnson EF, Glaser KB, Marcotte PA, Pease L, Soni NB, Stewart KD, Davidsen SK, Michaelides MR, Djuric SW (2008) Scaffold oriented synthesis. Part 2: design, synthesis and biological evaluation of pyrimido-diazepines as receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 18:2691–2695. https://doi.org/10.1016/j.bmcl.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  104. Liu J, Lin TH, Cole AG, Wen R, Zhao L, Brescia M-R, Jacob B, Hussain Z, Appell KC, Henderson I, Webb ML (2008) Identification and characterization of small-molecule inhibitors of Tie2 kinase. FEBS Lett 582:785–791. https://doi.org/10.1016/j.febslet.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  105. Ayoub MA, Trebaux J, Vallaghe J, Charrier-Savournin F, Al-Hosaini K, Gonzalez Moya A, Pin J-P, Pfleger KDG, Trinquet E (2014) Homogeneous time-resolved fluorescence-based assay to monitor extracellular signal-regulated kinase signaling in a high-throughput format. Front Endocrinol (Lausanne) 5:94. https://doi.org/10.3389/fendo.2014.00094

    Article  Google Scholar 

  106. Vaasa A, Ligi K, Mohandessi S, Enkvist E, Uri A, Miller LW (2012) Time-gated luminescence microscopy with responsive nonmetal probes for mapping activity of protein kinases in living cells. Chem Commun (Camb) 48:8595–8597. https://doi.org/10.1039/c2cc33565d

    Article  CAS  Google Scholar 

  107. Enkvist E, Vaasa A, Kasari M, Kriisa M, Ivan T, Ligi K, Raidaru G, Uri A (2011) Protein-induced long lifetime luminescence of nonmetal probes. ACS Chem Biol 6:1052–1062. https://doi.org/10.1021/cb200120v

    Article  CAS  PubMed  Google Scholar 

  108. Enomoto K, Okamoto H, Numata Y, Takemoto H (2006) A simple and rapid assay for heparanase activity using homogeneous time-resolved fluorescence. J Pharm Biomed Anal 41:912–917. https://doi.org/10.1016/j.jpba.2006.01.032

    Article  CAS  PubMed  Google Scholar 

  109. Aouadi W, Eydoux C, Coutard B, Martin B, Debart F, Vasseur JJ, Contreras JM, Morice C, Quérat G, Jung M-L, Canard B, Guillemot J-C, Decroly E (2017) Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay. Antivir Res 144:330–339. https://doi.org/10.1016/j.antiviral.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  110. Ji J, Lao K, Hu J, Pang T, Jiang Z, Yuan H, Miao J, Chen X, Ning S, Xiang H, Guo Y, Yan M, Zhang L (2014) Discovery of novel aromatase inhibitors using a homogeneous time-resolved fluorescence assay. Acta Pharmacol Sin 35:1082–1092. https://doi.org/10.1038/aps.2014.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Algar WR, Malanoski AP, Susumu K, Stewart MH, Hildebrandt N, Medintz IL (2012) Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay. Anal Chem 84:10136–10146. https://doi.org/10.1021/ac3028068

    Article  CAS  PubMed  Google Scholar 

  112. Zhang S, Ma Y, Li J, Ma J, Yu B, Xie X (2014) Molecular matchmaking between the popular weight-loss herb Hoodia gordonii and GPR119, a potential drug target for metabolic disorder. Proc Natl Acad Sci U S A 111:14571–14576. https://doi.org/10.1073/pnas.1324130111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89. https://doi.org/10.1038/nbt765

    Article  CAS  PubMed  Google Scholar 

  114. Valencia C, Dujet C, Margathe J-F, Iturrioz X, Roux T, Trinquet E, Villa P, Hibert M, Dupuis E, Llorens-Cortes C, Bonnet D (2017) A time-resolved FRET cell-based binding assay for the apelin receptor. ChemMedChem 12:925–931. https://doi.org/10.1002/cmdc.201700106

    Article  CAS  PubMed  Google Scholar 

  115. Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdioui S, Gregor N, Bourrier E, Oueslati N, Nicolas L, Tinel N, Boisseau C, Yverneau P, Charrier-Savournin F, Fink M, Trinquet E (2010) A fluorescent ligand-binding alternative using Tag-lite® technology. J Biomol Screen 15:1248–1259. https://doi.org/10.1177/1087057110384611

    Article  CAS  PubMed  Google Scholar 

  116. Leyris J-P, Roux T, Trinquet E, Verdié P, Fehrentz J-A, Oueslati N, Douzon S, Bourrier E, Lamarque L, Gagne D, Galleyrand J-C, M’kadmi C, Martinez J, Mary S, Banères J-L, Marie J (2011) Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a. Anal Biochem 408:253–262. https://doi.org/10.1016/j.ab.2010.09.030

    Article  CAS  PubMed  Google Scholar 

  117. Emami-Nemini A, Roux T, Leblay M, Bourrier E, Lamarque L, Trinquet E, Lohse MJ (2013) Time-resolved fluorescence ligand binding for G protein-coupled receptors. Nat Protoc 8:1307–1320. https://doi.org/10.1038/nprot.2013.073

    Article  CAS  PubMed  Google Scholar 

  118. Thibon A, Pierre VC (2009) Principles of responsive lanthanide-based luminescent probes for cellular imaging. Anal Bioanal Chem 394:107–120. https://doi.org/10.1007/s00216-009-2683-2

    Article  CAS  PubMed  Google Scholar 

  119. Aulsebrook ML, Graham B, Grace MR, Tuck KL (2017) Lanthanide complexes for luminescence-based sensing of low molecular weight analytes. Coord Chem Rev 375:191–220. https://doi.org/10.1016/j.ccr.2017.11.018

    Article  CAS  Google Scholar 

  120. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466. https://doi.org/10.1097/COH.0b013e32833ed177

    Article  PubMed  PubMed Central  Google Scholar 

  121. Detassis S, Grasso M, Del Vescovo V, Denti MA (2017) microRNAs make the call in cancer personalized medicine. Front Cell Dev Biol 5:86. https://doi.org/10.3389/fcell.2017.00086

    Article  PubMed  PubMed Central  Google Scholar 

  122. Borrebaeck CAK (2017) Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer 17:199–204. https://doi.org/10.1038/nrc.2016.153

    Article  CAS  PubMed  Google Scholar 

  123. Jeromin A, Bowser R (2017) Biomarkers in neurodegenerative diseases. Adv Neurobiol 15:491–528. https://doi.org/10.1007/978-3-319-57193-5_20

    Article  PubMed  Google Scholar 

  124. Wang J, Tan G-J, Han L-N, Bai Y-Y, He M, Liu H-B (2017) Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol 14:135–150. https://doi.org/10.11909/j.issn.1671-5411.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dorcely B, Katz K, Jagannathan R, Chiang SS, Oluwadare B, Goldberg IJ, Bergman M (2017) Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes 10:345–361. https://doi.org/10.2147/DMSO.S100074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kashani K, Cheungpasitporn W, Ronco C (2017) Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med 55:1074–1089. https://doi.org/10.1515/cclm-2016-0973

    Article  CAS  PubMed  Google Scholar 

  127. Qin Q-P, Christiansen M, Pettersson K (2002) Point-of-care time-resolved immunofluorometric assay for human pregnancy-associated plasma protein A: use in first-trimester screening for Down syndrome. Clin Chem 48:473–483

    CAS  PubMed  Google Scholar 

  128. Tsukerman GL, Gusina NB, Cuckle HS (1999) Maternal serum screening for Down syndrome in the first trimester: experience from Belarus. Prenat Diagn 19:499–504. https://doi.org/10.1002/(SICI)1097-0223(199906)19:6<499::AID-PD555>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  129. Niemimaa M, Suonpää M, Perheentupa A, Seppälä M, Heinonen S, Laitinen P, Ruokonen A, Ryynänen M (2001) Evaluation of first trimester maternal serum and ultrasound screening for Down’s syndrome in Eastern and Northern Finland. Eur J Hum Genet 9:404–408. https://doi.org/10.1038/sj.ejhg.5200655

    Article  CAS  PubMed  Google Scholar 

  130. Prieto B, Llorente E, González-Pinto I, Alvarez FV (2008) Plasma procalcitonin measured by time-resolved amplified cryptate emission (TRACE) in liver transplant patients. A prognosis marker of early infectious and non-infectious postoperative complications. Clin Chem Lab Med 46:660–666

    Article  CAS  PubMed  Google Scholar 

  131. Tousch D, Lajoix A-D, Hosy E, Azay-Milhau J, Ferrare K, Jahannault C, Cros G, Petit P (2008) Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun 377:131–135. https://doi.org/10.1016/j.bbrc.2008.09.088

    Article  CAS  PubMed  Google Scholar 

  132. Wang D-Y, Lu Q, Walsh SL, Payne L, Modha SS, Scott MJ, Sweitzer TD, Ames RS, Krosky DJ, Li H (2008) Development of a high-throughput cell-based assay for 11beta-hydroxysteroid dehydrogenase type 1 using BacMam technology. Mol Biotechnol 39:127–134. https://doi.org/10.1007/s12033-008-9050-y

    Article  CAS  PubMed  Google Scholar 

  133. Goedken ER, Gagnon AI, Overmeyer GT, Liu J, Petrillo RA, Burchat AF, Tomlinson MJ (2008) HTRF-based assay for microsomal prostaglandin E2 synthase-1 activity. J Biomol Screen 13:619–625. https://doi.org/10.1177/1087057108321145

    Article  CAS  PubMed  Google Scholar 

  134. Lewis H, Beher D, Cookson N, Oakley A, Piggott M, Morris CM, Jaros E, Perry R, Ince P, Kenny RA, Ballard CG, Shearman MS, Kalaria RN (2006) Quantification of Alzheimer pathology in ageing and dementia: age-related accumulation of amyloid-beta(42) peptide in vascular dementia. Neuropathol Appl Neurobiol 32:103–118. https://doi.org/10.1111/j.1365-2990.2006.00696.x

    Article  CAS  PubMed  Google Scholar 

  135. Penas C, Pazos E, Mascareñas JL, Vázquez ME (2013) A folding-based approach for the luminescent detection of a short RNA hairpin. J Am Chem Soc 135:3812–3814. https://doi.org/10.1021/ja400270a

    Article  CAS  PubMed  Google Scholar 

  136. Pazos E, Jiménez-Balsa A, Mascareñas JL, Vázquez ME (2011) Sensing coiled-coil proteins through conformational modulation of energy transfer processes—selective detection of the oncogenic transcription factor c-Jun. Chem Sci 2:1984. https://doi.org/10.1039/c1sc00108f

    Article  CAS  Google Scholar 

  137. González-Vera JA, Bouzada D, Bouclier C, Eugenio Vázquez M, Morris MC (2017) Lanthanide-based peptide biosensor to monitor CDK4/cyclin D kinase activity. Chem Commun (Camb) 53:6109–6112. https://doi.org/10.1039/c6cc09948c

    Article  CAS  Google Scholar 

  138. Pazos E, Torrecilla D, Vázquez López M, Castedo L, Mascareñas JL, Vidal A, Vázquez ME (2008) Cyclin A probes by means of intermolecular sensitization of terbium-chelating peptides. J Am Chem Soc 130:9652–9653. https://doi.org/10.1021/ja803520q

    Article  CAS  PubMed  Google Scholar 

  139. Newton P, Harrison P, Clulow S (2008) A novel method for determination of the affinity of protein: protein interactions in homogeneous assays. J Biomol Screen 13:674–682. https://doi.org/10.1177/1087057108321086

    Article  CAS  PubMed  Google Scholar 

  140. Maurel D, Comps-Agrar L, Brock C, Rives M-L, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prézeau L, Trinquet E, Pin J-P (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567. https://doi.org/10.1038/nmeth.1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vischer HF, Nijmeijer S, Smit MJ, Leurs R (2008) Viral hijacking of human receptors through heterodimerization. Biochem Biophys Res Commun 377:93–97. https://doi.org/10.1016/j.bbrc.2008.09.082

    Article  CAS  PubMed  Google Scholar 

  142. Lakowicz JR (2001) Method and composition for detecting the presence of a nucleic acid sequence in a sample. US6200752B1. https://patents.google.com/patent/US6200752B1/

  143. Rajendran M, Miller LW (2015) Evaluating the performance of time-gated live-cell microscopy with lanthanide probes. Biophys J 109:240–248. https://doi.org/10.1016/j.bpj.2015.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jin D, Piper JA (2011) Time-gated luminescence microscopy allowing direct visual inspection of lanthanide-stained microorganisms in background-free condition. Anal Chem 83:2294–2300. https://doi.org/10.1021/ac103207r

    Article  CAS  PubMed  Google Scholar 

  145. Zhang L, Zheng X, Deng W, Lu Y, Lechevallier S, Ye Z, Goldys EM, Dawes JM, Piper JA, Yuan J, Verelst M, Jin D (2014) Practical implementation, characterization and applications of a multi-colour time-gated luminescence microscope. Sci Rep 4:6597. https://doi.org/10.1038/srep06597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Soini AE, Kuusisto A, Meltola NJ, Soini E, Seveus L (2003) A new technique for multiparameter imaging microscopy: use of long decay time photoluminescent labels enables multiple color immunocytochemistry with low channel-to-channel crosstalk. Microsc Res Tech 62:396–407. https://doi.org/10.1002/jemt.10389

    Article  CAS  PubMed  Google Scholar 

  147. Grichine A, Haefele A, Pascal S, Duperray A, Michel R, Andraud C, Maury O (2014) Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation. Chem Sci 5:3475–3485. https://doi.org/10.1039/C4SC00473F

    Article  CAS  Google Scholar 

  148. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573. https://doi.org/10.1038/nmeth.1624

    Article  CAS  PubMed  Google Scholar 

  149. Lu Y, Xi P, Piper JA, Huo Y, Jin D (2012) Time-gated orthogonal scanning automated microscopy (OSAM) for high-speed cell detection and analysis. Sci Rep 2:837. https://doi.org/10.1038/srep00837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ruedas-Rama MJ, Alvarez-Pez JM, Crovetto L, Paredes JM, Orte A (2015) FLIM strategies for intracellular sensing. In: Kapusta P, Wahl M, Erdmann R (eds) Advanced photon counting. Springer, Cham, pp 191–223

    Google Scholar 

  151. Dahan M, Laurence T, Pinaud F, Chemla DS, Alivisatos AP, Sauer M, Weiss S (2001) Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 26:825–827

    Article  CAS  PubMed  Google Scholar 

  152. Mandal G, Darragh M, Wang YA, Heyes CD (2013) Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast cancer cells. Chem Commun (Camb) 49:624–626. https://doi.org/10.1039/c2cc37529j

    Article  CAS  Google Scholar 

  153. Bouccara S, Fragola A, Giovanelli E, Sitbon G, Lequeux N, Pons T, Loriette V (2014) Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection. J Biomed Opt 19:051208. https://doi.org/10.1117/1.JBO.19.5.051208

    Article  CAS  PubMed  Google Scholar 

  154. Liu M, Ye Z, Xin C, Yuan J (2013) Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes. Anal Chim Acta 761:149–156. https://doi.org/10.1016/j.aca.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  155. Smith DG, McMahon BK, Pal R, Parker D (2012) Live cell imaging of lysosomal pH changes with pH responsive ratiometric lanthanide probes. Chem Commun (Camb) 48:8520–8522. https://doi.org/10.1039/c2cc34267g

    Article  CAS  Google Scholar 

  156. Liu X, Guo L, Song B, Tang Z, Yuan J (2017) Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples. Methods Appl Fluoresc 5:014009. https://doi.org/10.1088/2050-6120/aa61af

    Article  CAS  PubMed  Google Scholar 

  157. Liu X, Tang Z, Song B, Ma H, Yuan J (2017) A mitochondria-targeting time-gated luminescence probe for hypochlorous acid based on a europium complex. J Mater Chem B 5:2849–2855. https://doi.org/10.1039/C6TB02991D

    Article  CAS  PubMed  Google Scholar 

  158. Song B, Ye Z, Yang Y, Ma H, Zheng X, Jin D, Yuan J (2015) Background-free in-vivo imaging of vitamin C using time-gateable responsive probe. Sci Rep 5:14194. https://doi.org/10.1038/srep14194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dai Z, Tian L, Song B, Ye Z, Liu X, Yuan J (2014) Ratiometric time-gated luminescence probe for hydrogen sulfide based on lanthanide complexes. Anal Chem 86:11883–11889. https://doi.org/10.1021/ac503611f

    Article  CAS  PubMed  Google Scholar 

  160. Dai Z, Tian L, Ye Z, Song B, Zhang R, Yuan J (2013) A lanthanide complex-based ratiometric luminescence probe for time-gated luminescence detection of intracellular thiols. Anal Chem 85:11658–11664. https://doi.org/10.1021/ac403370g

    Article  CAS  PubMed  Google Scholar 

  161. Sun J, Song B, Ye Z, Yuan J (2015) Mitochondria targetable time-gated luminescence probe for singlet oxygen based on a β-diketonate-europium complex. Inorg Chem 54:11660–11668. https://doi.org/10.1021/acs.inorgchem.5b02458

    Article  CAS  PubMed  Google Scholar 

  162. Afsari HS, Cardoso Dos Santos M, Lindén S, Chen T, Qiu X, van Bergen En Henegouwen PMP, Jennings TL, Susumu K, Medintz IL, Hildebrandt N, Miller LW (2016) Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Sci Adv 2:e1600265. https://doi.org/10.1126/sciadv.1600265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tu C-C, Awasthi K, Chen K-P, Lin C-H, Hamada M, Ohta N, Li Y-K (2017) Time-gated imaging on live cancer cells using silicon quantum dot nanoparticles with long-lived fluorescence. ACS Photonics 4:1306–1315. https://doi.org/10.1021/acsphotonics.7b00188

    Article  CAS  Google Scholar 

  164. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256. https://doi.org/10.1016/S1387-2656(05)11007-2

    Article  CAS  PubMed  Google Scholar 

  165. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 100:7075–7080. https://doi.org/10.1073/pnas.0832308100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Thorson MK, Ung P, Leaver FM, Corbin TS, Tuck KL, Graham B, Barrios AM (2015) Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples. Anal Chim Acta 896:160–165. https://doi.org/10.1016/j.aca.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  167. Surender EM, Bradberry SJ, Bright SA, McCoy CP, Williams DC, Gunnlaugsson T (2017) Luminescent lanthanide cyclen-based enzymatic assay capable of diagnosing the onset of catheter-associated urinary tract infections both in solution and within polymeric hydrogels. J Am Chem Soc 139:381–388. https://doi.org/10.1021/jacs.6b11077

    Article  CAS  PubMed  Google Scholar 

  168. Chen X, Wang Y, Chai R, Xu Y, Li H, Liu B (2017) Luminescent lanthanide-based organic/inorganic hybrid materials for discrimination of glutathione in solution and within hydrogels. ACS Appl Mater Interfaces 9:13554–13563. https://doi.org/10.1021/acsami.7b02679

    Article  CAS  PubMed  Google Scholar 

  169. Gorai T, Maitra U (2016) Supramolecular approach to enzyme sensing on paper discs using lanthanide photoluminescence. ACS Sens 1:934–940. https://doi.org/10.1021/acssensors.6b00341

    Article  CAS  Google Scholar 

  170. Zhang R, Liu S, Wang J, Han G, Yang L, Liu B, Guan G, Zhang Z (2016) Visualization of exhaled hydrogen sulphide on test paper with an ultrasensitive and time-gated luminescent probe. Analyst 141:4919–4925. https://doi.org/10.1039/c6an00830e

    Article  CAS  PubMed  Google Scholar 

  171. Hashino K, Ikawa K, Ito M, Hosoya C, Nishioka T, Makiuchi M, Matsumoto K (2007) Application of a fluorescent lanthanide chelate label on a solid support device for detecting DNA variation with ligation-based assay. Anal Biochem 364:89–91. https://doi.org/10.1016/j.ab.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  172. Lövgren T, Meriö L, Mitrunen K, Mäkinen ML, Mäkelä M, Blomberg K, Palenius T, Pettersson K (1996) One-step all-in-one dry reagent immunoassays with fluorescent europium chelate label and time-resolved fluorometry. Clin Chem 42:1196–1201

    PubMed  Google Scholar 

  173. Nagl S, Stich MIJ, Schäferling M, Wolfbeis OS (2009) Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature. Anal Bioanal Chem 393:1199–1207. https://doi.org/10.1007/s00216-008-2467-0

    Article  CAS  PubMed  Google Scholar 

  174. Leblanc V, Delaunay V, Claude Lelong J, Gas F, Mathis G, Grassi J, May E (2002) Homogeneous time-resolved fluorescence assay for identifying p53 interactions with its protein partners, directly in a cellular extract. Anal Biochem 308:247–254

    Article  CAS  PubMed  Google Scholar 

  175. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives M-L, Newman A, Javitch J, Trinquet E, Manning M, Pin J-P, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594. https://doi.org/10.1038/nchembio.396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lu Y, Jin D, Leif RC, Deng W, Piper JA, Yuan J, Duan Y, Huo Y (2011) Automated detection of rare-event pathogens through time-gated luminescence scanning microscopy. Cytometry A 79:349–355. https://doi.org/10.1002/cyto.a.21045

    Article  PubMed  Google Scholar 

  177. U.S. EPA (2005) Method 1623: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. EPA 815-R-05-002

    Google Scholar 

  178. Rich RM, Stankowska DL, Maliwal BP, Sørensen TJ, Laursen BW, Krishnamoorthy RR, Gryczynski Z, Borejdo J, Gryczynski I, Fudala R (2013) Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore. Anal Bioanal Chem 405:2065–2075. https://doi.org/10.1007/s00216-012-6623-1

    Article  CAS  PubMed  Google Scholar 

  179. Zhu Z, Song B, Yuan J, Yang C (2016) Enabling the triplet of tetraphenylethene to sensitize the excited state of Europium(III) for protein detection and time-resolved luminescence imaging. Adv Sci 3:1600146. https://doi.org/10.1002/advs.201600146

    Article  CAS  Google Scholar 

  180. Von Lode P, Rosenberg J, Pettersson K, Takalo H (2003) A europium chelate for quantitative point-of-care immunoassays using direct surface measurement. Anal Chem 75:3193–3201

    Article  Google Scholar 

  181. Jia Y (2008) Current status of HTRF(®) technology in kinase assays. Expert Opin Drug Discov 3:1461–1474. https://doi.org/10.1517/17460440802518171

    Article  CAS  PubMed  Google Scholar 

  182. Cisbio Bioassays, Codolet, France Application Note: HTRF KinEASE: a universal expanded platform to address Serine/Threonine & Tyrosine kinases. https://www.cisbio.com/drug-discovery/htrf-kinease-universal-expanded-platform-address-serinethreonine-tyrosine-kinases. Accessed 29 Jan 2018

  183. Harbert C, Marshall J, Soh S, Steger K (2008) Development of a HTRF kinase assay for determination of Syk activity. Curr Chem Genomics 1:20–26. https://doi.org/10.2174/1875397300801010020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Larson B, Gonzalez-Moya A, Wolff A, Luty W. Application Note: analysis of the effect of aggregated β-amyloid on cellular signaling pathways critical for memory in Alzheimer’s disease. http://www.enzolifesciences.com/about-us/collaborations-at-work/neuroscience/analysis-of-the-effect-of-aggregated-b-amyloid-on-cellular-signaling-pathways-critical-for-memory-in-alzheimer%27s-disease/. Accessed 29 Jan 2018

  185. PerkinElmer I (2012) DELFIA assays: flexible and sensitive tools for monoclonal antibody development. Technical note. PerkinElmer, Hopkinton

    Google Scholar 

  186. Allicotti G, Borras E, Pinilla C (2003) A time-resolved fluorescence immunoassay (DELFIA) increases the sensitivity of antigen-driven cytokine detection. J Immunoassay Immunochem 24:345–358. https://doi.org/10.1081/IAS-120025772

    Article  CAS  PubMed  Google Scholar 

  187. Karvinen J, Hurskainen P, Gopalakrishnan S, Burns D, Warrior U, Hemmilä I (2002) Homogeneous time-resolved fluorescence quenching assay (LANCE) for caspase-3. J Biomol Screen 7:223–231. https://doi.org/10.1177/108705710200700306

    Article  CAS  PubMed  Google Scholar 

  188. Ylikoski A, Elomaa A, Ollikka P, Hakala H, Mukkala V-M, Hovinen J, Hemmilä I (2004) Homogeneous time-resolved fluorescence quenching assay (TruPoint) for nucleic acid detection. Clin Chem 50:1943–1947. https://doi.org/10.1373/clinchem.2004.036616

    Article  CAS  PubMed  Google Scholar 

  189. Laitala V, Hemmilä I (2005) Homogeneous assay based on anti-Stokes’ shift time-resolved fluorescence resonance energy-transfer measurement. Anal Chem 77:1483–1487. https://doi.org/10.1021/ac048414o

    Article  CAS  PubMed  Google Scholar 

  190. Rickard DJ, Sehon CA, Kasparcova V, Kallal LA, Haile PA, Zeng X, Montoute MN, Poore DD, Li H, Wu Z, Eidam PM, Emery JG, Marquis RW, Gough PJ, Bertin J (2014) Identification of selective small molecule inhibitors of the nucleotide-binding oligomerization domain 1 (NOD1) signaling pathway. PLoS One 9:e96737. https://doi.org/10.1371/journal.pone.0096737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gakamsky DM, Dennis RB, Smith SD (2011) Use of fluorescence lifetime technology to provide efficient protection from false hits in screening applications. Anal Biochem 409:89–97. https://doi.org/10.1016/j.ab.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  192. De Witte WEA, Wong YC, Nederpelt I, Heitman LH, Danhof M, van der Graaf PH, Gilissen RAHJ, de Lange ECM (2016) Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients. Expert Opin Drug Discov 11:45–63. https://doi.org/10.1517/17460441.2016.1100163

    Article  CAS  PubMed  Google Scholar 

  193. Schiele F, Ayaz P, Fernández-Montalván A (2015) A universal homogeneous assay for high-throughput determination of binding kinetics. Anal Biochem 468:42–49. https://doi.org/10.1016/j.ab.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  194. Lipchik AM, Perez M, Bolton S, Dumrongprechachan V, Ouellette SB, Cui W, Parker LL (2015) KINATEST-ID: a pipeline to develop phosphorylation-dependent terbium sensitizing kinase assays. J Am Chem Soc 137:2484–2494. https://doi.org/10.1021/ja507164a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Cui W, Parker LL (2016) Modular, antibody-free time-resolved LRET kinase assay enabled by quantum dots and Tb(3+)-sensitizing peptides. Sci Rep 6:28971. https://doi.org/10.1038/srep28971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lipchik AM, Perez M, Cui W, Parker LL (2015) Multicolored, Tb3+-based antibody-free detection of multiple tyrosine kinase activities. Anal Chem 87:7555–7558. https://doi.org/10.1021/acs.analchem.5b02233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cui W, Parker LL (2015) A time-resolved luminescence biosensor assay for anaplastic lymphoma kinase (ALK) activity. Chem Commun (Camb) 51:362–365. https://doi.org/10.1039/c4cc07453j

    Article  CAS  Google Scholar 

  198. Pritz S, Meder G, Doering K, Drueckes P, Woelcke J, Mayr LM, Hassiepen U (2011) A fluorescence lifetime-based assay for abelson kinase. J Biomol Screen 16:65–72. https://doi.org/10.1177/1087057110385817

    Article  CAS  PubMed  Google Scholar 

  199. Doering K, Meder G, Hinnenberger M, Woelcke J, Mayr LM, Hassiepen U (2009) A fluorescence lifetime-based assay for protease inhibitor profiling on human kallikrein 7. J Biomol Screen 14:1–9. https://doi.org/10.1177/1087057108327328

    Article  CAS  PubMed  Google Scholar 

  200. Whateley JG (2003) Fluorescence-based methods for measuring enzyme activity. US20030228646A1

    Google Scholar 

  201. Whateley JG (2010) Methods for measuring enzyme activity. US7727739B2. https://patents.google.com/patent/US7727739

  202. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang T-L, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong H-L, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz L, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378):926–930. https://doi.org/10.1126/science.aar3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  204. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092. https://doi.org/10.1111/j.1349-7006.2010.01650.x

    Article  CAS  PubMed  Google Scholar 

  205. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5:e13735. https://doi.org/10.1371/journal.pone.0013735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C, Shen H (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28:1721–1726. https://doi.org/10.1200/JCO.2009.24.9342

    Article  PubMed  Google Scholar 

  207. Sita-Lumsden A, Dart DA, Waxman J, Bevan CL (2013) Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer 108:1925–1930. https://doi.org/10.1038/bjc.2013.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9:513–521. https://doi.org/10.1038/nrendo.2013.86

    Article  CAS  PubMed  Google Scholar 

  209. Cattaneo M, Pelosi E, Castelli G, Cerio AM, D’Angiò A, Porretti L, Rebulla P, Pavesi L, Russo G, Giordano A, Turri J, Cicconi L, Lo-Coco F, Testa U, Biunno I (2015) A miRNA signature in human cord blood stem and progenitor cells as potential biomarker of specific acute myeloid leukemia subtypes. J Cell Physiol 230:1770–1780. https://doi.org/10.1002/jcp.24876

    Article  CAS  PubMed  Google Scholar 

  210. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–249. https://doi.org/10.1016/j.ymeth.2010.01.026

    Article  CAS  PubMed  Google Scholar 

  211. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:e103. https://doi.org/10.1093/nar/gnh101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193. https://doi.org/10.1677/jme.0.0250169

    Article  CAS  PubMed  Google Scholar 

  213. Okamura Y, Kondo S, Sase I, Suga T, Mise K, Furusawa I, Kawakami S, Watanabe Y (2000) Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization. Nucleic Acids Res 28:E107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. https://doi.org/10.1038/nbt0396-303

    Article  CAS  PubMed  Google Scholar 

  215. Ng CT, Gilchrist CA, Lane A, Roy S, Haque R, Houpt ER (2005) Multiplex real-time PCR assay using Scorpion probes and DNA capture for genotype-specific detection of Giardia lamblia on fecal samples. J Clin Microbiol 43:1256–1260. https://doi.org/10.1128/JCM.43.3.1256-1260.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wegman DW, Krylov SN (2011) Direct quantitative analysis of multiple miRNAs (DQAMmiR). Angew Chem Int Ed Engl 50:10335–10339. https://doi.org/10.1002/anie.201104693

    Article  CAS  PubMed  Google Scholar 

  217. Wegman DW, Ghasemi F, Khorshidi A, Yang BB, Liu SK, Yousef GM, Krylov SN (2015) Highly-sensitive amplification-free analysis of multiple miRNAs by capillary electrophoresis. Anal Chem 87:1404–1410. https://doi.org/10.1021/ac504406s

    Article  CAS  PubMed  Google Scholar 

  218. Pernagallo S, Ventimiglia G, Cavalluzzo C, Alessi E, Ilyine H, Bradley M, Diaz-Mochon JJ (2012) Novel biochip platform for nucleic acid analysis. Sensors (Basel) 12:8100–8111. https://doi.org/10.3390/s120608100

    Article  CAS  Google Scholar 

  219. Bowler FR, Reid PA, Boyd AC, Diaz-Mochon JJ, Bradley M (2011) Dynamic chemistry for enzyme-free allele discrimination in genotyping by MALDI-TOF mass spectrometry. Anal Methods 3:1656. https://doi.org/10.1039/c1ay05176h

    Article  CAS  Google Scholar 

  220. Bowler FR, Diaz-Mochon JJ, Swift MD, Bradley M (2010) DNA analysis by dynamic chemistry. Angew Chem Int Ed Engl 49:1809–1812. https://doi.org/10.1002/anie.200905699

    Article  CAS  PubMed  Google Scholar 

  221. Rissin DM, López-Longarela B, Pernagallo S, Ilyine H, Vliegenthart ADB, Dear JW, Díaz-Mochón JJ, Duffy DC (2017) Polymerase-free measurement of microRNA-122 with single base specificity using single molecule arrays: detection of drug-induced liver injury. PLoS One 12:e0179669. https://doi.org/10.1371/journal.pone.0179669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Venkateswaran S, Luque-González MA, Tabraue-Chávez M, Fara MA, López-Longarela B, Cano-Cortes V, López-Delgado FJ, Sánchez-Martín RM, Ilyine H, Bradley M, Pernagallo S, Díaz-Mochón JJ (2016) Novel bead-based platform for direct detection of unlabelled nucleic acids through Single Nucleobase Labelling. Talanta 161:489–496. https://doi.org/10.1016/j.talanta.2016.08.072

    Article  CAS  PubMed  Google Scholar 

  223. Del Vescovo V, Meier T, Inga A, Denti MA, Borlak J (2013) A cross-platform comparison of affymetrix and Agilent microarrays reveals discordant miRNA expression in lung tumors of c-Raf transgenic mice. PLoS One 8:e78870. https://doi.org/10.1371/journal.pone.0078870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jiang L, Duan D, Shen Y, Li J (2012) Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens Bioelectron 34:291–295. https://doi.org/10.1016/j.bios.2012.01.035

    Article  CAS  PubMed  Google Scholar 

  225. Hemmilä I, Dakubu S, Mukkala VM, Siitari H, Lövgren T (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137:335–343. https://doi.org/10.1016/0003-2697(84)90095-2

    Article  PubMed  Google Scholar 

  226. Geissler D, Charbonnière LJ, Ziessel RF, Butlin NG, Löhmannsröben H-G, Hildebrandt N (2010) Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew Chem Int Ed Engl 49:1396–1401. https://doi.org/10.1002/anie.200906399

    Article  CAS  PubMed  Google Scholar 

  227. Qiu X, Hildebrandt N (2015) Rapid and multiplexed microRNA diagnostic assay using quantum dot-based Förster resonance energy transfer. ACS Nano 9:8449–8457. https://doi.org/10.1021/acsnano.5b03364

    Article  CAS  PubMed  Google Scholar 

  228. Jin Z, Geißler D, Qiu X, Wegner KD, Hildebrandt N (2015) A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA. Angew Chem Int Ed Engl 54:10024–10029. https://doi.org/10.1002/anie.201504887

    Article  CAS  PubMed  Google Scholar 

  229. Geißler D, Stufler S, Löhmannsröben H-G, Hildebrandt N (2013) Six-color time-resolved Förster resonance energy transfer for ultrasensitive multiplexed biosensing. J Am Chem Soc 135:1102–1109. https://doi.org/10.1021/ja310317n

    Article  CAS  PubMed  Google Scholar 

  230. Zhou S, Zheng W, Chen Z, Tu D, Liu Y, Ma E, Li R, Zhu H, Huang M, Chen X (2014) Dissolution-enhanced luminescent bioassay based on inorganic lanthanide nanoparticles. Angew Chem Int Ed Engl 53:12498–12502. https://doi.org/10.1002/anie.201405937

    Article  CAS  PubMed  Google Scholar 

  231. Lu L, Tu D, Liu Y, Zhou S, Zheng W, Chen X (2018) Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes. Nano Res 11:1–10. https://doi.org/10.1007/s12274-017-1629-9

    Article  CAS  Google Scholar 

  232. DestiNA Genomics Ltd. http://www.destinagenomics.com. Accessed 24 Jan 2018

  233. Optoi Microelectronics. http://www.optoi.com/. Accessed 27 Jan 2018

  234. miRNA-DisEASY: microRNA biomarkers in an innovative biophotonic sensor kit for high-specific diagnosis. https://optoi.com/en/applications/research-and-development/projects/mirna-diseasy-home-page. Accessed 24 Jan 2018

  235. Destina Genomics. In: www.destinagenomics.com; http://www.destinagenomics.com. Accessed 27 Jan 2018

  236. Bradley M, Diaz-Mochon JJ (2009) Nucleobase characterisation. WO2009037473A2. https://patents.google.com/patent/WO2009037473A2/

Download references

Acknowledgements

The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 690866 (miRNA-DisEASY) and grants CTQ2017–85658-R from the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Garcia-Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia-Fernandez, E., Pernagallo, S., González-Vera, J.A., Ruedas-Rama, M.J., Díaz-Mochón, J.J., Orte, A. (2019). Time-Gated Luminescence Acquisition for Biochemical Sensing: miRNA Detection. In: Pedras, B. (eds) Fluorescence in Industry. Springer Series on Fluorescence, vol 18. Springer, Cham. https://doi.org/10.1007/4243_2018_4

Download citation

Publish with us

Policies and ethics