Skip to main content

Climate Change and Bivalve Mass Mortality in Temperate Regions

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 251))

Abstract

One of the fastest-growing global food sectors is the bivalve aquaculture industry. Bivalves particularly oysters, mussels and clams are important sources of animal protein (Tan and Ransangan 2016a, b). Bivalve aquaculture represents 14–16% of the average per capita animal protein for 1.5 billion people and supports over 200,000 livelihoods, mostly in developing countries (FAO 2018). Most of the bivalves produced around the world (89%) are from aquaculture (FAO 2016). To date, mollusc aquaculture have accounted for 21.42% (17.14 million tonnes) of the total aquaculture production, with Asia being the largest contributor (92.27%) (FAO 2018).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

OA:

Ocean acidification

HABs:

Harmful algal blooms

ROD:

Roseovarius oyster disease

IPCC:

Intergovernmental panel on climate change

USA:

United States of America

UK:

United Kingdom

OH:

Hydroxide

CO32–:

Carbonate

References

  • Barton AD, Irwin AJ, Finkel ZV, Stock CA (2016) Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc Natl Acad Sci U S A 113(11):2964–2969

    CAS  Google Scholar 

  • Basti L, Segawa S (2010) Mortalities of the short-neck clam Ruditapes philippinarum induced by the toxic dinoflagellate Heterocapsa circularisquama. Fish Sci 76:625–631

    CAS  Google Scholar 

  • Basti L, Nagai K, Shimasaki Y, Oshima Y, Honjo T, Segawa S (2009) Effects of the toxic dinoflagellate Heterocapsa circularisquama on the valve movement behaviour of the Manila clam Ruditapes philippinarum. Aquaculture 291:41–47

    Google Scholar 

  • Boardman CL, Maloy AP, Boettcher KJ (2008) Localization of the bacterial agent of juvenile oyster disease (Roseovarius crassostreae) within affected eastern oysters (Crassostrea virginica). J Invertebr Pathol 97:150–158

    Google Scholar 

  • Boettcher KJ, Geaghan KK, Maloy AP, Barber BJ (2005) Roseovarius crassostreae sp. nov., a member of the Roseobacter clade and the apparent cause of juvenile oyster disease (JOD) in cultured Eastern oysters. Int J Syst Evol Microbiol 55:1531–1537

    CAS  Google Scholar 

  • Bressan M, Chinellato A, Munari M, Matozzo V, Manci A, Marceta T, Finos L, Moro I, Pastore P, Badocco D, Marin MG (2014) Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles? Mar Environ Res 99:136–148

    CAS  Google Scholar 

  • Bricelj VM, Kuenstner SH (1989) Effects of the “Brown tide” on the feeding physiology and growth of bay scallops and mussels. In: Cosper EM, Bricelj VM, Carpenter EJ (eds) Novel phytoplankton blooms. Coastal and estuarine studies (formerly Lecture Notes on Coastal and Estuarine Studies), vol 35. Springer, Berlin

    Google Scholar 

  • Bricelj VM, MacQuarrie SP (2007) Effects of brown tide (Aureococcus anophagefferens) on hard clam Mercenaria mercenaria larvae and implications for benthic recruitment. Mar Ecol Prog Ser 331:147–159

    Google Scholar 

  • Bricelj VM, Epp J, Malouf R, E. (1987) Intraspecific variation in reproductive and somatic growth cycles of bay scallops Argopecten irradians. Mar Ecol Prog Ser 36:123–137

    Google Scholar 

  • Bricelj VM, Ford SE, Borrero FJ, Perkins FO, Rivara G, Hillman RE, Elston RA, Chang J (1992) Unexplained mortalities of hatchery-reared, juvenile oysters, Crassostrea virginica (Gmelin). J Shellfish Res 11:331–347

    Google Scholar 

  • Bricelj VM, MacQuarrie SP, Schaffner RA (2001) Differential effects of Aureococcus anophagefferens isolates ("brown tide") in unialgal and mixed suspensions on bivalve feeding. Mar Biol 139:605–615

    Google Scholar 

  • Bushek D, Ford SE, Burt I (2012) Long-term patterns of an estuarine pathogen along a salinity gradient. J Mar Res 70:225–251

    Google Scholar 

  • Byrne RH (2002) Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochem Trans 3:11–16

    Google Scholar 

  • Caceres-Martinez J, Madero-Lopez LH, Padilla-Lardizabal G, Vasquez-Yeomans R (2016) Epizootiology of Perkinsus marinus, parasite of the pleasure oyster Crassostrea corteziensis, in the Pacific coast of Mexico. J Invertebr Pathol 139:12–18

    Google Scholar 

  • Callaway R, Burdon D, Deasey A, Mazik K, Elliott M (2013) The riddle of the sands: population dynamics provides clues to causes of high cockle mortality. J Appl Ecol 50:1050–1059

    Google Scholar 

  • Chen M, Yang H, Delaporte M, Zhao S (2007) Immune condition of Chlamys farreri in response to acute temperature challenge. Aquaculture 271:479–487

    Google Scholar 

  • Cheney DP, MacDonald BF, Elston RA (2000) Summer mortality of Pacific oysters Crassostrea gigas (Thunberg): initial findings on multiple environmental stressors in Puget Sound, Washington, 1998. J Shellfish Res 19(1):353–359

    Google Scholar 

  • Comps M, Cochennec N (1993) A herpes-like virus from the European oyster Ostrea edulis L. J Invertebr Pathol 62:201–203

    Google Scholar 

  • Cook T, Folli M, Klinck J, Ford S, Miller J (1998) The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuar Coast Shelf Sci 46:587–597

    Google Scholar 

  • Da Silva PM, Renault T, Fuentes J, Villalba A (2008) Herpesvirus infection in European flat oysters Ostrea edulis obtained from brood stocks of various geographic origins and grown in Galicia (NW Spain). Dis Aquat Organ 78:181–188

    Google Scholar 

  • Davis CV, Barber BJ (1994) Size-dependent mortality in hatchery-reared populations of oysters, Crassostrea virginica, Gmelin 1791, affected by juvenile oyster disease. J Shellfish Res 13:137–142

    Google Scholar 

  • Defeo O, Castrejón M, Ortega L, Kuhn AM, Gutiérrez NL, Castilla JC (2013) Impacts of climate variability on Latin American small-scale fisheries. Ecol Soc 18:30

    Google Scholar 

  • Degerman R, Dinasquet J, Riemann L, de Luna SS, Anderson A (2013) Effect of resource availability on bacterial community responses to increased temperature. Aquat Microb Ecol 68:131–142

    Google Scholar 

  • Degremont L, Bedier E, Soletchnik P, Ropert M, Huvet A, Moal J, Samain JF, Boudry P (2005) Relative importance of family, site, and field placement timing on survival, growth, and yield of hatchery-produced Pacific oyster spat (Crassostrea gigas). Aquaculture 249:213–229

    Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37

    Google Scholar 

  • Deslou-Paoli JM, Herl M, Berthome JP, Razel D, Garnier J (1982) Reproduction naturelle de Crassostrea gigas Thunberg dans le basin de Marennes-Oleron en 1979 et 1981: aspects biochimiques et energetiques. Rev Trav Inst Pech Marit 45:319–327

    Google Scholar 

  • Draper C, Gainey L, Shumway S, Shapiro L (1990) Effects of Aureococcus anophagefferens (“brown tide”) on the lateral cilia of 5 species of bivalve molluscs. In: Graneli E et al (eds) Toxic marine phytoplankton. Proceedings of the 4th international conference. Elsevier, New York, pp 128–131

    Google Scholar 

  • Enriquez-Espinoza TL, Grijalva-Chon JM, Castro-Longoria R, Ramos-Paredes J (2010) Perkinsus marinus in Crassostrea gigas in the Gulf of California. Dis Aquat Organ 89:269–273

    CAS  Google Scholar 

  • FAO (2016) The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome

    Google Scholar 

  • FAO (2018) The State of World Fisheries and Aquaculture 2018: meeting the sustainable developing goals. Rome. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Farley CA, Banfield WG, Kasnic JRG, Foster WS (1972) Oyster herpes-type virus. Science 178:759–760

    CAS  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    CAS  Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47

    Google Scholar 

  • Filgueira R, Guyondet T, Comeau LA, Tremblay R (2016) Bivalve aquaculture-environment interactions in the context of climate change. Glob Chang Biol 22(12):3901–3913

    Google Scholar 

  • Fiori S, Cazzaniga N (1999) Mass mortality of the yellow clam, Mesodesma mactroides (Bivalvia, Mesodesmatidae) in Monte Hermoso Beach, Argentina. Biol Conserv 89:305–309

    Google Scholar 

  • Ford SE (1996) Range extension by the oyster parasite Perkinsus marinus into the northern US: response to climate change? J Shellfish Res 15:45–56

    Google Scholar 

  • Ford SE (2011) Dermo disease of oysters caused by Perkinsus marinus. In: Ford SE (ed) ICES identification leaflets for diseases and parasites of fish and shellfish. ICES, Copenhagen

    Google Scholar 

  • Ford SE, Borrero FJ (2001) Epizootiology and pathology of juvenile oyster disease in the Eastern oyster, Crassostrea virginica. J Invertebr Pathol 78(3):141–154

    CAS  Google Scholar 

  • Gagnaire B, Frouin H, Moreau K, Thomas-Guyon H, Renault T (2006) Effects of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish Shellfish Immunol 20:536–547

    CAS  Google Scholar 

  • Gainey LF, Shumway SE (1991) The physiological effect of Aureococcus anophagefferens (‘brown tide’) on the lateral cilia of bivalve mollusks. Biol Bull 181:298–306

    Google Scholar 

  • Garnier M, Labreuche Y, Garcia C, Robert M, Nicolas JL (2007) Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb Ecol 53:187–196

    CAS  Google Scholar 

  • Gattuso JP, Hansson L (eds) (2011) Ocean acidification. Oxford University Press, Oxford

    Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso JP, Middelburg JJ Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34

    Google Scholar 

  • Gazeau F, Alliouane S, Bock C, Bramanti L, Gentille M, Hirse T, Lopez M, Correa H-O, Pörtner HO, Ziveri P (2014) Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis). Front Mar Sci 1:62

    Google Scholar 

  • Gobler CJ, Lonsdale DJ, Boyer GL (2005) A synthesis and review of causes and impact of harmful brown tide blooms caused by the alga, Aureococcus anophagefferens. Estuaries 28:726–749

    Google Scholar 

  • Gobler CJ, Doherty OM, Hattenrath-Lehmann TK, Griffith AW, Kang Y, Litaker RW (2017) Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc Natl Acad Sci U S A 114(19):4975–4980

    CAS  Google Scholar 

  • Gonzalez R, Perez Camacho A (1984) El berberecho, Cerastoderma edule (L.) de Carril (Ria de Arosa) II: Reclutamiento, crecimiento, mortalidad natural y produccion. Actas IV Simposio Iberico do Estudos Do Benthos Marinho 2:223–244

    Google Scholar 

  • Goulletquer P, Soletchnick P, Le Moine O, Razet D, Geairon P, Faury N, Taillade S (1998) Summer mortality of the Pacific cupped oyster Crassostrea gigas in the Bay of Marennes-Oléron (France). Ices Statutory Meeting, Population Biology, Mariculture Committee CM, CC 14-20

    Google Scholar 

  • Greenfield DI, Lonsdale DJ (2002) Mortality and growth of juvenile hard clams Mercenaria mercenaria during brown tide. Mar Biol 141:1045–1050

    Google Scholar 

  • Guillard RRL (1959) Further evidence of the destruction of bivalve larvae by bacteria. Biol Bull 117:258–266

    Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    CAS  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M (2013) Observation: atmosphere and surface. IPCC WGI AR5 (Report). p 198

    Google Scholar 

  • Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife diseases: when does the host matter the most? Ecology 90:912–920

    Google Scholar 

  • Hegaret H, Wikfors GH (2005) Effects of natural and field simulated blooms of the dinoflagellate Prorocentrum minimum upon hemocytes of eastern oysters, Crassostrea virginica, from two different populations. Harmful Algae 4:201–209

    Google Scholar 

  • Hégaret H, Wikfors GH, Soudant P (2003) Flow-cytometric analysis of hemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation: II. Hemocyte functions: aggregation, viability, phagocytosis and respiratory burst. J Exp Mar Biol Ecol 293:249–265

    Google Scholar 

  • Hine PM (1997) Trends in research on diseases of bivalve mollusks. Bulletin of the European Association of Fish Pathologists 17:180–183

    Google Scholar 

  • Hine PM, Thorne ET (1997) Replication of herpes-like viruses in haemocytes of adult flat oysters Ostrea angasi: an ultrastructural study. Dis Aquat Organ 29:189–196

    Google Scholar 

  • Hine PM, Wesney B, Hay BE (1992) Herpesviruses associated with mortalities among hatchery-reared Pacific oysters, Crassostrea gigas. Dis Aquat Organ 12:135–142

    Google Scholar 

  • Hofmann EE, Bushek D, Ford SE, Guo X (2009) Understanding how disease and environment combine to structure resistance in estuarine bivalve population. CCPO Publications. Paper 33

    Google Scholar 

  • Huvet A, Herpin A, Degremont L, Labreuche Y, Samain JF, Cunningham C (2004) The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. Gene 343(1):211–220

    CAS  Google Scholar 

  • Ilarri M, Antunes C, Guilhermino L, Sousa R (2011) Massive mortality of the Asian clam Corbicula fluminea in a highly invaded area. Biol Invasions 13:277–280

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

    Google Scholar 

  • Ivanina AV, Dickinson GH, Matoo OB, Bagwe R, Dickinson A, Beniash E, Sokolova IM (2013) Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Comp Biochem Physiol A Mol Integr Physiol 166(1):101–111

    CAS  Google Scholar 

  • Joint I, Smale DA (2017) Marie heat waves and optimal temperatures for microbial assemblage activity. FEMS Microbiol Ecol 93(2)

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896

    Google Scholar 

  • Lacoste A, Jalabert F, Malham S, Cueff A, Gélébart F, Cordevant C, Lange M, Poulet SA (2001) A vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis Aquat Organ 46:139–145

    CAS  Google Scholar 

  • Lan Y, Ye T, Xue Y, Liu H, Zhang H, Cheng D, Zhao M, Zhang Y, Li S, Ma H, Zheng H (2018) Physiological and immunological responses to mass mortality in noble scallop Chlamys nobilis cultured in Nan’ao waters of Shantou, China. Fish Shellfish Immunol 82:453–459

    CAS  Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390

    Google Scholar 

  • Lauckner G (1983) Diseases of mollusca: Bivalvia. In: Kinne O (ed) Diseases of marine animals volume II: introduction, Bivalvia to Scaphopoda. Biologische Anstalt Helgoland, Hamburg, pp 477–961

    Google Scholar 

  • Leibovitz L, Schott EF, Karney RC (1984) Diseases of wild, captive and cultured scallops. J World Mariculture Soc 15(1):269–283

    Google Scholar 

  • Leverone JR, Shumway SE, Blake NJ (2007) Comparative effects of the toxic dinoflagellate Karenia brevis on clearance rates in juvenile of four bivalve molluscs from Florida, USA. Toxicon 49(5):634–645

    CAS  Google Scholar 

  • Li Y, Qin JG, Abbott CA, Li XX, Benkendorff K (2007) Synergistic impacts of heat shock and spawning on the physiology and immune health of Crassostrea gigas: an explanation for summer mortality in Pacific oysters. Am J Physiol 293:2353–2362

    Google Scholar 

  • Li S, Liu C, Huang J, Liu Y, Zheng G, Xie L, Zhang R (2015) Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J Exp Biol 218:3623–3631

    Google Scholar 

  • Lough JM, Hobday AJ (2011) Observed climate change in Australian marine and freshwater environments. Mar Freshw Res 62:984–999

    Google Scholar 

  • Luckenbach MW, Sellner KG, Shumway SE, Greene K (1993) Effects of two bloom-forming dinoflagellates, Prorocentrum minimum and Gyrodinium uncatenum, on the growth and survival of the eastern oyster, Crassostrea virginica (Gmelin 1791). J Shellfish Res 12:411–415

    Google Scholar 

  • Lynch SA, Carlson J, Reilly AO, Cotter E, Culloty SC (2012) A previously undescribed ostreid herpesvirus 1 (OsHV-1) genotype detected in the Pacific oyster, Crassostrea gigas, in Ireland. Parasitology 139:1526–1532

    CAS  Google Scholar 

  • Mackin JG, Owen HM, Collier A (1950) Preliminary note on the occurrence of a new protistan parasite, Dermocystidium marinum n. sp. in Crassostrea virginica (Gmelin). Science 111:328–329

    CAS  Google Scholar 

  • Malham SK, Cotter E, O’Keeffe S, Lynch S, Culloty SC, King JW, Latchford JW, Beaumont AR (2010) Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: The influence of temperature and nutrients on health and survival. Aquaculture 287(1–2):128–138

    Google Scholar 

  • Malham SK, Hutchinson TH, Longshaw M (2012) A review of the biology of European cockles (Cerastoderma spp.). J Marine Biol Assoc UK 92:1563–1577

    Google Scholar 

  • Maloy AP, Ford SE, Karney RC, Boettcher KJ (2007) Roseovarius crassostreae, the etiological agent of Juvenile Oyster Disease (now to be known as Roseovarius Oyster Disease) in Crassostrea virginica. Aquaculture 269:71–83

    Google Scholar 

  • Matsuyama Y (1999) Harmful effect of dinoflagellate Heterocapsa cicularisquama on shellfish aquaculture in Japan. Jpn Agr Res Q 33:283–293

    Google Scholar 

  • Matsuyama Y (2012) Impacts of the harmful dinoflagellate Heterocapsa circularisquama bloom on shellfish aquaculture in Japan and some experimental studies on invertebrates. Harmful Algae 14:144–155

    Google Scholar 

  • Matsuyama Y, Nagai K, Mizuguchi T, Fujiwara M, Ishimura M, Yamaguchi M, Uchida T, Honjo T (1995) Ecological features and mass mortality of pearl oysters during the red tide of Heterocapsa sp. in Ago Bay in 1992. Nippon Suisan Gakk 61:35–41

    Google Scholar 

  • Matsuyama Y, Uchida T, Nagai K, Ishimura M, Nishimura A, Yamaguchi M, Honjo T (1996) Harmful and toxic algal blooms. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Intergovernmental Oceanographic Commission of UNESCO, pp 247–250

    Google Scholar 

  • Matthews MA, McMahon RF (1999) Effects of temperature and temperature acclimation on survival of zebra mussel (Dreissena polymorpha) and Asian clams (Corbicula fluminea) under extreme hypoxia. J Moll Stud 65:317–325

    Google Scholar 

  • McFarland K, Jean F, Thebault J, Volety AK (2016) Potential impacts of blooms of the toxic dinoflagellate Karenia brevis on the growth, survival and juvenile recruitment of the non-native green mussel Perna viridis in Southeastern United States. Toxicon 109:94–102

    CAS  Google Scholar 

  • Millero FJ, Woosley R, Ditrolio B, Waters J (2009a) Effects of ocean acidification on the speciation of metals in seawater. Oceanogr Mar Biol Annu Rev 22:72–85

    Google Scholar 

  • Millero F, Woosley R, DiTrolio B, Waters J (2009b) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22(4):72–85

    Google Scholar 

  • Monari M, Matozzo V, Foschi J, Cattani O, Serrazanetti GP, Marin MG (2007) Effects of high temperatures on functional responses of haemocytes in the clam Chamelea gallina. Fish Shellfish Immunol 22:98–114

    CAS  Google Scholar 

  • Mouthon J, Daufesne M (2006) Effects of the 2003 heatwave and climate warning on mollusc communities of the Saone: a large lowland river and of its two main tributaries (France). Glob Chang Biol 12:441–449

    Google Scholar 

  • Nicolas JL, Comps M, Cochennec N (1992) Herpes-like virus infecting Pacific oyster larvae, Crassostrea gigas. Bull Eur Assoc Fish Pathol 12(1):11–13

    Google Scholar 

  • Nicolas J, Corre S, Gautheir G, Robert R, Ansquer D (1996) Bacterial problems associated with scallop Pecten maximus larval culture. Dis Aquat Organ 27:67–76

    Google Scholar 

  • O’Donnell M, George MN, Carrington E (2013) Mussel byssus attachment weakened by ocean acidification. Nat Clim Chang 3:587–590

    Google Scholar 

  • Ortega L, Celentano E, Delgado E, Defeo O (2016) Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Mar Ecol Prog Ser 545:203–213

    Google Scholar 

  • Park KI, Yang HS, Kang HS, Cho M, Park KJ, Choi KS (2010) Isolation and identification of Perkinsus olseni from feces and marine sediment using immunological and molecular techniques. J Invertebr Pathol 105:261–269

    Google Scholar 

  • Paynter KT, Politano V, Lane HA, Allen SM, Meritt D (2010) Growth rates and prevalence of Perkinsus marinus in restored oyster populations in Maryland. J Shellfish Res 29:309–317

    Google Scholar 

  • Peeler JE, Reese RA, Cheslett DL, Geoghegan F, Power A, Trush MA (2012) Investigation of mortality in Pacific oysters associated with Ostreid herpesvirus-1 μVar in the Republic of Ireland in 2009. Prev Vet Med 105:136–143

    Google Scholar 

  • Queiroga FR, Vianna RT, Vieira CB, Farias ND, Da Silva PM (2015) Parasites infecting the cultured oyster Crassostrea gasar (Adanson, 1757) in Northeast Brazil. Parasitology 142:756–766

    Google Scholar 

  • Ramakritinan CM, Chandurvelan R, Kumaraguru AK (2012) Acute toxicity of metals: Cu, Pb, Cd, Hg and Zn on marine molluscs, Cerithidea cingulate G., and Modiolus philippinarum H. Indian J Geomarine Sci 41(2):141–145

    CAS  Google Scholar 

  • Remacha-Trivino A, Borsay-Horowitz D, Dungan C, Gual-Arnau X, Gomez-Leon J, Villamil L, Gomez-Chiarri M (2008) Numerical quantification of Perkinsus marinus in the American oyster Crassostrea virginica (Gmelin, 1791) (Mollusca: Bivalvia) by modern stereology. J Parasitol 94:125–136

    Google Scholar 

  • Renault T, Cochennec N, Le Deuff RM, Chollet B (1994a) Herpes-like virus infecting Japanese oyster (Crassostrea gigas) spat. Bull Eur Assoc Fish Pathol 14:64–66

    Google Scholar 

  • Renault T, Le Deuff RM, Cochennec N, Maffart P (1994b) Herpesviruses associated with mortalities among Pacific oyster, Crassostrea gigas, in France – comparative study. Rev Med Vet 145:735–742

    Google Scholar 

  • Renault T, Chollet B, Cochennec N, Gerard A (2002) Shell disease in eastern oysters, Crassostrea virginica, reared in France. J Invertebr Pathol 79:1–6

    CAS  Google Scholar 

  • Renault T, Moreau P, Faury N, Pepin JF, Segarra A, Webb S (2012) Analysis of clinical ostreid herpesvirus 1 (Malacoherpesviridae) specimens by sequencing amplified fragments from three virus genome areas. J Virol 86:5942–5947

    CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    CAS  Google Scholar 

  • Saulnier D, De Decker S, Haffner P, Cobret L, Robert M, Garcia C (2010) A large scale epidemiological study to identify bacteria pathogenic to pacific oyster Crassostrea gigas and correlation between virulence and metalloprotease-like activity. Microb Ecol 59:787–798

    Google Scholar 

  • Segarra A, Pepin JF, Arzul I, Morga B, Faury N, Renault T (2010) Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas. Virus Res 153:92–95

    CAS  Google Scholar 

  • Sellner KG, Shumway SE, Luckenbach MW, Cucci TL (1995) The effects of dinoflagellate blooms on the oyster Crassostrea virginica in Chesapeake Bay. In: Lassus P, Arzul G, Erard-LeDen E, Gentien P, Marcaillou-LeBaut C (eds) Harmful algal blooms. Lavoisier, Paris, pp 505–512

    Google Scholar 

  • Shi W, Zhao X, Han Y, Che Z, Chai X, Liu G (2016) Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety. Sci Rep 6:20197

    CAS  Google Scholar 

  • Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res Oceans 110:C09S08

    Google Scholar 

  • Smolowitz R (2013) A review of current state of knowledge concerning Perkinsus Marinus effects on Crassostrea virginica (Gmelin) (the eastern oyster). Vet Pathol 50:404–411

    CAS  Google Scholar 

  • Soletchnik P, Ropert M, Mazurié J, Fleury PG, Le Coz F (2007) Relationships between oyster mortality patterns and environmental data from monitoring databases along the coasts of France. Aquaculture 271(1–4):384–400

    Google Scholar 

  • Soniat TM (1996) Epizootiology of Perkinsus marinus disease of eastern oysters in the Gulf of Mexico. J Shellfish Res 15:35–43

    Google Scholar 

  • Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves. PLoS One 6(10):e26941

    CAS  Google Scholar 

  • Tan KS, Ransangan J (2015) Factors influencing the toxicity, detoxification and biotransformation of paralytic shellfish toxins. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology volume 235. Springer International Publishing Switzerland, Basel, pp 1–25

    Google Scholar 

  • Tan KS, Ransangan J (2016a) Feeding behaviour of green mussels, Perna viridis in Marudu Bay, Malaysia. Aquacult Res 48(3):1216–1231

    Google Scholar 

  • Tan KS, Ransangan J (2016b) Feasibility of green mussel, Perna viridis farming in Marudu Bay, Malaysia. Aquac Rep 4:130–135

    Google Scholar 

  • Tan KS, Ransangan J (2016c) High mortality and poor growth of green mussels, Perna viridis, in high chlorophyll-a environment. Ocean Sci J 51(1):43–57

    Google Scholar 

  • Tan KS, Ransangan J (2016d) Effects of environmental conditions and nutrients on the occurrence and distribution of potentially harmful phytoplankton in mesotrophic water. Sains Malaysiana 45(6):865–877

    Google Scholar 

  • Tan KS, Ransangan J (2017) Effects of nutrients and zooplankton on the phytoplankton community structure in Marudu Bay. Estuar Coast Shelf Sci 194:16–29

    Google Scholar 

  • Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–1088

    CAS  Google Scholar 

  • Tracey GA (1988) Feeding reduction, reproductive failure, and mortality in Mytilus edulis during the 1985 “brown tide” in Narragansett Bay, Rhode Island. Mar Ecol Prog Ser 50:73–81

    Google Scholar 

  • Tubiash HS, Chanley PE, Leifson E (1965) Bacillary necrosis, a disease of larval and juvenile bivalve mollusks. I. Etiology and epizootiology. J Bacteriol 90:1036–1044

    CAS  Google Scholar 

  • Vohmann A, Borcherding J, Kureek A (2009) Strong body mass decrease of the invasive clam Corbicula fluminea during summer. Biol Invasions 12:53–64

    Google Scholar 

  • Wazniak CE, Glibert PM (2004) Potential impacts of brown tide, Aureococcus anophagefferens, on juvenile hard clams, Mercenaria mercenaria, in the coastal bays of Maryland, USA. Harmful Algae 3:321–329

    CAS  Google Scholar 

  • Wendling CC, Wegner KM (2013) Relative contribution of reproductive investment, thermal stress and Vibrio infection to summer mortality phenomena in Pacific oysters. Aquaculture 412–413:88–96

    Google Scholar 

  • Werner S, Rothhauot KO (2008) Mass mortality of the invasive bivalve Corbicula fluminea induced by a severe low-water event and associated low water temperatures. Hydrobiologia 613:143–150

    Google Scholar 

  • Whyte C, Swan S, Davidson K (2014) Changing wind patterns linked to unusually high Dinophysis blooms around the Shetland Islands, Scotland. Harmful Algae 39:365–373

    Google Scholar 

  • Wikfors GH (2005) A review and new analysis of trophic interactions between Prorocentrum minimum and clams, scallops, and oysters. Harmful Algae 4:585–592

    Google Scholar 

  • Wikfors GH, Smolowitz RM (1993) Detrimental effects of a Prorocentrum isolate upon hard clams and bay scallops in laboratory feeding studies. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 447–452

    Google Scholar 

  • Wootton EC, Dyrynda EA, Ratcliffe NA (2003) Bivalve immunity: comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua). Fish Shellfish Immunol 15:195–210

    CAS  Google Scholar 

  • Yamamoto C, Tanaka Y (1990) Two species of harmful red tide plankton increased in Fukuoka Bay. Bull Fukuoka Fisheries Exp Station 16:43–44

    Google Scholar 

  • Yurimoto T, Kassim FM, Fuseya R, Man A (2014) Mass mortality event of the blood cockle, Anadara granosa, in aquaculture ground along Selangor coast, Peninsular Malaysia. Int Aquat Res 6:177–186

    Google Scholar 

  • Zha S, Liu S, Su W, Shi W, Xiao G, Yan M, Liu G (2017) Laboratory simulation reveals significantly impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi. Fish Shellfish Immunol 71:393–398

    CAS  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by the National Natural Science Foundation of China (31872563), National Key R&D Program of China (2018YFD0901400), China Modern Agro-industry Technology Research System (CARS-49) and Department of Education of Guangdong Province (2017KCXTD014), China. We are very grateful to Dr. Jude Juventus Aweya (Department of Biology, Shantou University) for proofreading and English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiping Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soon, T.K., Zheng, H. (2019). Climate Change and Bivalve Mass Mortality in Temperate Regions. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 251. Reviews of Environmental Contamination and Toxicology, vol 251. Springer, Cham. https://doi.org/10.1007/398_2019_31

Download citation

Publish with us

Policies and ethics