Skip to main content

Mercury (Hg), Lead (Pb), Cadmium (Cd), Selenium (Se), and Arsenic (As) in Liver, Kidney, and Feathers of Gulls: A Review

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 247

Abstract

Mercury (Hg), lead (Pb), cadmium (Cd), selenium (Se), and arsenic (As) are metals or metalloids of high concern because of their effects on the environment and, specially, their potential toxicity on the animals inhabiting there. Due to their relevance, these elements have been object of several biomonitoring studies in different animal species around the world. Birds are widespread and, as species, are able to supply specific and relevant information about the regions where they live, being useful as bioindicators, as long as they are not birds with a strong migratory character. The main goal of this review is to summarize data collected from different studies using seabirds, paying special attention to gulls, in order to be helpful for coming studies and regulatory affairs.

Several tissues have been used to evaluate Hg, Cd, Pb, Se, and As concentrations in seabirds, being focused the present review in those analyzing the liver, kidneys, and feathers. The most frequently analyzed tissue for Hg was the liver, followed by feathers, and finally kidney. For Cd levels, most of the studies were carried out in the liver, followed by feathers and kidneys. Pb, Se, and As levels were determined to a lesser extent. Feathers should be taken carefully as indicator of accumulation of pollutants, since procedure during analysis may lead to controversial results.

Some authors reported that interspecific differences in the exposure of elements are determined by multiple factors, including properties of the contaminant, species, feeding habits, migratory status, sex, and age.

The present review provides a comprehensive overview of the analyzed elements’ occurrence in different species of seabirds, including gulls. Therefore, it can be a useful database providing for Hg, Pb, Cd, Se, and As levels in different tissues of seabirds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aazami J, Bahramifar N, Ghasempouri S, Savabieasfahan M (2011) Mercury in liver, kidney, feather and muscle of seabirds from Major Wetlands of the Caspian Sea, Iran. Bull Environ Contam Toxicol 86:657–661

    CAS  Google Scholar 

  • Abadin H, Ashizawa A, Stevens YW, Llados F, Diamond G, Sage G, Citra M, Quinones A, Bosch SJ, Swarts SG (2007) Toxicological profile for lead. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Agusa T, Matsumoto T, Ikemoto T, Anan Y, Kubota R, Yasunaga G, Shibata Y (2005) Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs. Environ Toxicol Chem 24:2107–2120

    CAS  Google Scholar 

  • Ahmadpour M, Lan-Hai L, Ahmadpour M, Hoseini SH, Mashrofeh A, Binkowski ŁJ (2016) Mercury concentration in the feathers of birds from various trophic levels in Fereydunkenar International wetland (Iran). Environ Monit Assess 188(12):666

    Google Scholar 

  • Albers P, Green D, Sanderson C (1996) Diagnostic criteria for selenium toxicosis in aquatic birds: dietary exposure, tissue concentrations, and macroscopic effects. J Wildl Dis 32:468–485

    CAS  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    CAS  Google Scholar 

  • Anderson O, Phillips R, McDonald R, Shore R, McGill R, Bearhop S (2009) Influence of trophic position and foraging range on mercury levels within a seabird community. Mar Ecol Prog Ser 375:277–288

    CAS  Google Scholar 

  • Anderson O, Phillips R, Shore R, McGill R, McDonald R, Bearhop S (2010) Element patterns in albatrosses and petrels: influence of trophic position, foraging range, and prey type. Environ Pollut 158:98–107

    CAS  Google Scholar 

  • Appelquist H, Drabaek I, Asbirk S (1985) Variation in mercury content of Guillemot feathers over 150 years. Mar Pollut Bull 16:244–248

    CAS  Google Scholar 

  • Arcos JM, Ruiz X, Bearhop S, Furness RW (2002) Mercury levels in seabirds and their fish prey at the Ebro Delta (NW Mediterranean): the role of trawler discards as a source of contamination. Mar Ecol Prog Ser 232:281–290

    CAS  Google Scholar 

  • Aschner M, Costa L (2017) Neurotoxicity of metals. Advances in neurobiology 18. Springer International Publishing, Cham

    Google Scholar 

  • Atrian S, Capdevila M (2013) Metallothionein-protein interactions. Biomol Concepts 4(2):143–160

    CAS  Google Scholar 

  • ATSDR (1988) The Nature and extent of lead poisoning in children in the United States: a report to Congress. Agency for Toxic Substances and Disease Registry. U.S. Dept. of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2007) Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry. U.S. Dept. of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2015) The ATSDR 2015 substance priority list. Agency for Toxic Substances and Disease Registry. U.S. Dept. of Health and Human Services. Atlanta. https://www.atsdr.cdc.gov/spl/

  • Barbieri E, Alex C, Garcia RB, De Andrade Passos E, Aragão KAS, Hora Alves DP (2007) Heavy metal concentration in tissues of Puffinus gravis sampled on the Brazilian coast. Rev Bras Ornitol 15(1):69–72

    Google Scholar 

  • Barbieri E, Passos E, Filippini A, Dos Santos I, Garcia C (2010) Assessment of trace metal concentration cadmium feathers of seabird (Larus dominicanus) sampled in the Florianopolis, SC, Brazilian coast. Environ Monit Assess 169:631–638

    CAS  Google Scholar 

  • Bargagli R (2005) Antarctic ecosystems: environmental contamination, climate change, and human impact. Springer Science & Business Media, Berlin

    Google Scholar 

  • Bearhop S, Waldron S, Thompson D, Furness R (2000) Bioamplification of Mercury in Great Skua, Catharacta skua chicks: the influence of trophic status as determined by stable isotope signatures of blood and feathers. Mar Pollut Bull 40:181–185

    CAS  Google Scholar 

  • Becker PH, Goutner V, Ryan PG, Gonzalez-Solís J (2016) Feather mercury concentrations in Southern Ocean seabirds: variation by species, site and time. Environ Pollut 216:253–263

    CAS  Google Scholar 

  • Beilstein MA, Whanger PD (1987) Metabolism of selenomethionine and effects of interacting compounds by mammalian cells in culture. J Inorg Biochem 29:137–152

    CAS  Google Scholar 

  • Bellrose FC (1959) Lead poisoning as a mortality factor in waterfowl populations. Ill Nat Hist Surv Bull 27(3):235–288

    CAS  Google Scholar 

  • Benson WW, Brock DW, Gabica J, Loomis M (1976) Swan mortality due to certain heavy metals in the Mission Lake area, Idaho. Bull Environ Contam Toxicol 15:171–174

    CAS  Google Scholar 

  • Berg W, Johnels A, Sjrstrand B, Westmark T (1966) Mercury content in feathers of Swedish birds from the past 100 years. Oikos 17:71–83

    Google Scholar 

  • Blais JM, Mcdonald RW, Mackay D, Webster E, Harvey C, Smol JP (2007) Biologically mediated transport of contaminants to aquatic systems. Environ Sci Technol 41:1075–1084

    CAS  Google Scholar 

  • Bond A, Diamond A (2009) Total and methyl mercury concentrations in seabird feathers and eggs. Arch Environ Contam Toxicol 56:286–291

    CAS  Google Scholar 

  • Bond A, Robertson G (2015) Mercury concentrations in multiple tissues of Arctic Iceland Gulls (Larus glaucoides) wintering in Newfoundland. Arct Sci 1:1–8

    Google Scholar 

  • Braune BM, Gaskin DE (1987a) Mercury levels in Bonaparte’s gulls (Larus philadelphia) during autumn molt in the Quoddy region, New Brunswick, Canada. Arch Environ Contam Toxicol 16:539–549

    CAS  Google Scholar 

  • Braune BM, Gaskin DE (1987b) A mercury budget for the Bonaparte’s gull (Larus philadelphia) during autumn moult. Ornis Scand 18:244–250

    Google Scholar 

  • Braune BM, Mallory ML, Gilchrist HG, Letcher RJ, Drouillard KG (2007) Levels and trends of organochlorines and brominated flame retardants in ivory gull eggs from the Canadian Arctic, 1976 to 2004. Sci Total Environ 378(3):403–417

    CAS  Google Scholar 

  • Braune BM, Noble DG (2009) Environmental contaminants in Canadian shorebirds. Environ Monit Assess 148:185–204

    CAS  Google Scholar 

  • Braune BM, Scheuhammer AM (2008) Trace element and metallothionein concentrations in seabirds from the Canadian Arctic. Environ Toxicol Chem 27:645–651

    CAS  Google Scholar 

  • Brown RJ, Milton MJT (2005) Analytical techniques for trace element analysis: an overview. TrAC Trends Anal Chem 24(3):266–274

    CAS  Google Scholar 

  • Burger J (1994) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Contam Toxicol 5:197–306

    Google Scholar 

  • Burger J (1995) Heavy metal and selenium levels in feathers of Herring Gulls (Larus argentatus): differences due to year, gender, and age at Captree, Long Island. Environ Monit Assess 38:37–50

    CAS  Google Scholar 

  • Burger J (1996) Heavy metal and selenium levels in feathers of Franklin’s Gulls in interior North America. Auk 113(2):399–407

    Google Scholar 

  • Burger J (1997) Heavy metals and selenium in herring gulls (Larus argentatus) nesting in colonies from eastern long Island to Virginia. Environ Monit Assess 48:285–296

    CAS  Google Scholar 

  • Burger J (2007) A framework and methods for incorporating gender related issues in wildlife risk assessment: gender-related differences in metal levels and other contaminants as a case study. Environ Res 104:153–162

    CAS  Google Scholar 

  • Burger J, Gochfeld M (1985) Comparisons of nine heavy metals in salt gland and liver of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos). Comp Biochem Physiol C Comp Pharmacol 81:287–292

    CAS  Google Scholar 

  • Burger J, Gochfeld M (1992) Heavy metal and selenium concentrations in black skimmers (Rynchops niger): gender differences. Arch Environ Contam Toxicol 23:431–434

    CAS  Google Scholar 

  • Burger J, Gochfeld M (1994) Behavioral impairments of lead-injected young herring gulls in nature. Fundam Appl Toxicol 23(4):553–561

    CAS  Google Scholar 

  • Burger J, Gochfeld M (2000a) Metals in albatross feathers from Midway Atoll: influence of species, age, and nest location. Environ Res 82:207–221

    CAS  Google Scholar 

  • Burger J, Gochfeld M (2000b) Effects of lead on birds (Laridae): a review of laboratory and field studies. J Toxicol Environ Health Part B 3:59–78

    CAS  Google Scholar 

  • Burger J, Gochfeld M (2009) Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska. Environ Monit Assess 152:357–367

    CAS  Google Scholar 

  • Burger J, Bowman R, Woolfenden GE, Gochfeld M (2004) Metal and metalloid concentrations in the eggs of threatened Florida scrub-jays in suburban habitat from south-central Florida. Sci Total Environ 328:185–193

    CAS  Google Scholar 

  • Burger J, Gochfeld M, Sullivan K, Irons D (2007) Mercury, arsenic, cadmium, chromium lead, and selenium in feathers of pigeon guillemots (Cepphus columba) from Prince William Sound and the Aleutian Islands of Alaska. Sci Total Environ 387:175–184

    CAS  Google Scholar 

  • Burger J, Gochfeld M, Sullivane K, Irons D, McKnightf A (2008) Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in feathers of Black-legged Kittiwake (Rissa tridactyla) and Black Oystercatcher (Haematopus bachmani) from Prince William Sound, Alaska. Sci Total Environ 398:20–25

    CAS  Google Scholar 

  • Burger J, Gochfeld M, Jeitner C, Burke S, Conrad DV, Snigaroff R, Snigaroff D, Shukla T, Shukla S (2009) Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians. Environ Monit Assess 152:179–194

    CAS  Google Scholar 

  • Burger J, Mizrahi D, Tsipoura N, Jeitner C, Gochfeld M (2018) Mercury, lead, cadmium, cobalt, arsenic and selenium in the blood of semipalmated sandpipers (Calidris pusilla) from Suriname, South America: age-related differences in wintering site and comparisons with a stopover site in New Jersey, USA. Toxics 6:27

    Google Scholar 

  • Calle P, Alvarado O, Monserrate L, Cevallos J, Calle N, Alava J (2015) Mercury accumulation in sediments and seabird feathers from the Antarctic Peninsula. Mar Pollut Bull 91:410–417

    CAS  Google Scholar 

  • Carpenè E, Serra R, Isani G (1995) Heavy metals in some species of waterfowl of northern Italy. J Wildl Dis 31:49–56

    Google Scholar 

  • Chappell RW, Abernathy CO, Cothern CR (1994) Arsenic: exposure and health. Environmental geochemistry and health, vol 16 (special issue). Science and Tech Letts, Northwood

    Google Scholar 

  • Chiarelli R, Roccheri MC (2014) Marine invertebrates as bioindicators of heavy metal pollution. Open J Metal 4:93–106

    Google Scholar 

  • Cid FD, Gatica-Sosa C, Anton RI, Caviedes-Vidal E (2009) Contamination of heavy metals in birds from Embalse La Florida (San Luis, Argentina). J Environ Monit 11:2044–2051

    CAS  Google Scholar 

  • Collinson JM, Parkin DT, Knox AG, Sangster G, Svensson L (2008) Species boundaries in the Herring Gull and Lesser Black-Backed Gull complex. Br Birds 101(7):340–363

    Google Scholar 

  • Cortés M, Luna-Jorquera G (2011) Efecto de la edad y la localidad en la concentración de cadmio y cobre en el hígado de la gaviota dominicana Larus dominicanus. Rev Biol Mar Oceanogr 46:287–292

    Google Scholar 

  • Cramp S, Simmons K (1983) Handbook of the birds of Europe, the Middle East and North Africa: Waders to Gulls v.3: the birds of the Western Palearctic: Waders to Gulls, vol 3. Oxford University Press, Oxford

    Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335–335

    CAS  Google Scholar 

  • Custer TW, Hoffman WL (1994) Trace elements in canvasback (Aythya valisineria) wintering in Louisiana, USA, 1987-1988. Environ Pollut 84:253–259

    CAS  Google Scholar 

  • Custer TW, Franson JC, Pattee OH (1984) Tissue lead distribution and hematologic effects in American kestrels (Falco sparverius L.) fed biologically incorporated lead. J Wildl Dis 20(1):39–43

    CAS  Google Scholar 

  • Dauwe T, Bervoets L, Blust R, Eens M (2002) Tissue levels of lead in experimentally exposed zebra finches (Taeniopygia guttata) with particular attention on the use of feathers as biomonitors. Arch Environ Contam Toxicol 42(1):88–92

    CAS  Google Scholar 

  • Dey PM, Burger J, Gochfeld M, Reuhl KR (2000) Developmental lead exposure disturbs expression of synaptic neural cell adhesion molecules in herring gull brains. Toxicology 146:137–147

    CAS  Google Scholar 

  • Dietz R, Riget F, Johansen P (1996) Lead, cadmium, mercury and selenium in Greenland marine animals. Sci Total Environ 186:67–93

    CAS  Google Scholar 

  • Dimari GA, Abdulkarim FI, Akan JC, Garba ST (2008) Metal concentrations in tissues of Bagrus bayad, Clarias lazera and Osteoglosides caught from Alau Dam, Maiduguri, Borno state, Nigeria. Am J Environ Sci 4:379–473

    Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Sci Total Environ 47:4967–4983

    CAS  Google Scholar 

  • Drury WH, Kadlec JA (1974) The current status of the Herring Gull population in the Northeastern United States. Bird-Banding 45:297–306

    Google Scholar 

  • Dubois M, Hare L (2009) Subcellular distribution of cadmium in two aquatic invertebrates: change over time and relationship to cd assimilation and loss by a predatory insect. Environ Sci Technol 43:356–361

    CAS  Google Scholar 

  • Duncan N (1981) The Abbeys lead and Mallowdale gull colony before control. Bird Study 28:133–138

    Google Scholar 

  • Eagles-Smith CA, Suchanek TH, Colwell AE, Anderson NL, Moyle PB (2008) Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish. Ecol Appl 18(8 Suppl):A213–A226

    Google Scholar 

  • Eeva T, Ryömä M, Riihimäki J (2005) Pollution-related changes in diets of two insectivorous passerines. Oecologia 145:629–639

    CAS  Google Scholar 

  • Eisler R (1985) Cadmium hazards to fish, wildlife and invertebrates: a synoptic review. U.S. Fish & Wildlife Service, Washington, DC. Biological Report 85

    Google Scholar 

  • Eisler R (1987) Mercury hazards to fish, wildlife and invertebrates: a synoptic review. U.S. Department of Interior, Washington DC. Biological Report 85

    Google Scholar 

  • Eisler R (1994) A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources. In: Nriagu JO (ed) Arsenic in the environment, part II: human health and ecosystem effects. Wiley, New York, pp 185–259

    Google Scholar 

  • Elliott JE, Scheuhammer AM (1997) Heavy metal and metallothionein concentrations in seabirds from the Pacific coast of Canada. Mar Pollut Bull 34:794–801

    CAS  Google Scholar 

  • Elliott JE, Scheuhammer AM, Leighton FA, Pearce PA (1992) Heavy metal and metallothionein concentrations in Atlantic Canadian seabirds. Arch Environ Contam Toxicol 22:63–73

    CAS  Google Scholar 

  • Filipic M, Fatur T, Vudrag M (2006) Molecular mechanisms of cadmium induced mutagenicity. Hum Exp Toxicol 25:67–77

    CAS  Google Scholar 

  • Finkelstein M, Gwiazda R, Smith D (2003) Lead poisoning of seabirds: environmental risks from leaded paint at a decommissioned military base. Environ Sci Tech 37:3256–3260

    CAS  Google Scholar 

  • Firmreite N (1974) Mercury contamination of aquatic birds in northwestern Ontario. J Wildl Manag 38:120–131

    Google Scholar 

  • Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Tech 32:1–7

    CAS  Google Scholar 

  • Flora SJS, Bhadauria S, Kannan GM, Singh N (2007) Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28:333–347

    CAS  Google Scholar 

  • Franson JC, Sileo L, Patte OH, Moore JF (1983) Effects of chronic dietary lead in American kestrels (Falco sparverius). J Wildl Dis 19:110–113

    CAS  Google Scholar 

  • Frantz A, Federici p, Legoupi j, Jacquin L, Gasparini J (2016) Sex-associated differences in trace metals concentrations in and on the plumage of a common urban bird species. Ecotoxicology 25(1):22–29

    CAS  Google Scholar 

  • Friberg L, Piscator M, Nordberg G, Kjellstrom T (1974) Cadmium in the environment II. CRC Press, Cleveland

    Google Scholar 

  • Fujihara J, Kunito T, Kubota R, Tanaka H, Tanabe S (2004) Arsenic accumulation and distribution in tissues of black-footed albatrosses. Mar Pollut Bull 48:1153–1160

    CAS  Google Scholar 

  • Furness R, Hutton M (1979) Pollutant levels in the great skua Catharacta skua. Environ Pollut 19(4):261–268

    CAS  Google Scholar 

  • Furness RW, Camphuysen K (1997) Seabirds as monitors of the marine environment. ICES Journal of Marine Science 54:726–737

    Google Scholar 

  • Furness RW, Muirhead SJ, Woodurn M (1986) Using bird feathers to measure mercury in the environment: relationships between mercury content and moult. Mar Pollut Bull 17:27–30

    CAS  Google Scholar 

  • Furness RW, Greenwood JJ, Jarvis P, Lehr Brisbin I, Ormerod S, Tyler S, Montevecchi W, Baillie S, Crick H, Marchant J, Peach WJ (1993) Birds as monitors of environmental changes. Chapman and Hall, London

    Google Scholar 

  • Geens A, Dauwe T, Bervoets L, Blust R, Eens M (2010) Haematological status of wintering great tits (Parus major) along a metal pollution gradient. Sci Total Environ 408:1174–1179

    CAS  Google Scholar 

  • Gesamp (1987) IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP joint group of experts on the scientific aspects of marine pollution: report of the seventeenth session. World Health Organization, Geneva, p 1987

    Google Scholar 

  • Gill C, Langelier KM (1994) British Columbia. Acute lead poisoning in a bald eagle secondary to bullet ingestion. Can Vet J 35:303–304

    CAS  Google Scholar 

  • Gochfeld M, Burger J (1987) Heavy metal concentrations in the liver of three duck species: influence of species and sex. Environ Pollut 45:1–15

    CAS  Google Scholar 

  • Gochfeld M, Belant JL, Shukla T, Benson T, Burger J (1996) Heavy metals in laughing gulls: gender, age and tissue differences. Environ Toxicol Chem 15:2275–2283

    CAS  Google Scholar 

  • Goede AA, Bruin M (1984) The use of bird feather parts as a monitor for metal pollution. Environ Pollut B 8:281–298

    CAS  Google Scholar 

  • Gómez G, Baos R, Gómara B, Jiménez B, Benito V, Montoro R, Hiraldo F, González MJ (2004) Influence of a mine tailing accident near Doñana National Park (Spain) on heavy metals and arsenic accumulation in 14 species of waterfowl (1998 to 2000). Arch Environ Contam Toxicol 47:521–529

    Google Scholar 

  • Goyer RA, Cherian MG, Delaquerriere-Richardson L (1984) Correlation of parameters of cadmium exposure with onset of cadmium-induced nephropathy in rats. J Environ Pathol Toxicol Oncol 5:89–100

    CAS  Google Scholar 

  • Graeme KA, Pollack CJ (1998) Heavy metal toxicity, part I: arsenic and mercury. J Emerg Med 16:45–56

    CAS  Google Scholar 

  • Grandjean P, Satoh H, Murata K, Eto K (2010) Adverse effects of methylmercury: environmental health research implications. Environ Health Perspect 118(8):1137

    CAS  Google Scholar 

  • Hebert CE, Weseloh DV (2006) Adjusting for temporal change in trophic position results in reduced rates of contaminant decline. Environ Sci Tech 40:5624–5628

    CAS  Google Scholar 

  • Hebert CE, Weseloh DV, Gauthier LT, Arts MT, Letcher RJ (2009) Biochemical tracers reveal intra-specific differences in the food webs utilized by individual seabirds. Oecologia 160:15–23

    Google Scholar 

  • Heinz GH (1993) Re‐exposure of mallards to selenium after chronic exposure. Environ Toxicol Chem 12(9):1691–1694

    CAS  Google Scholar 

  • Heinz G (1996) Selenium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. SETAC CRC, Lewis, Boca Raton, pp 447–458

    Google Scholar 

  • Heinz G, Hoffman DJ (2003) Embryotoxic thresholds of mercury: estimates from individual mallard eggs. Arch Environ Contam Toxicol 44:257–264

    CAS  Google Scholar 

  • Heinz G, Haseltine S, Sileo L (1983) Altered avoidance behavior of young black ducks fed cadmium. Environ Toxicol Chem 2:419–421

    CAS  Google Scholar 

  • Heinz G, Hoffman DJ, Gold LG (1988) Toxicity of organic and inorganic selenium to mallard ducklings. Arch Environ Contam Toxicol 17:561–568

    CAS  Google Scholar 

  • Heinz G, Hoffman DJ, Gold L (1989) Impaired reproduction of mallards fed an organic form of selenium. J Wildl Manag 53:418–428

    Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188

    Google Scholar 

  • Hoffman DJ (2002) Role of selenium toxicity and oxidative stress in aquatic birds. Aquat Toxicol 57(1-2):11–26

    CAS  Google Scholar 

  • Hoffman DJ, Curnow RD (1979) Mercury in herons, egrets and their foods. Journal of Wildlife Management 43:85–93

    CAS  Google Scholar 

  • Hoffman DJ, Heinz GH, Krynitsky AJ (1989) Hepatic glutathione metabolism and lipid peroxidation in response to excess dietary selenomethionine and selenite in mallard ducklings. J Toxicol Environ Health 27:263–271

    CAS  Google Scholar 

  • Hoffman DJ, Heinz GH, LeCaptain LJ, Bunck CM, Green DM (1991) Subchronic hepatotoxicity of selenomethionine ingestion in mallard ducks. J Toxicol Environ Health A 32:449–464

    CAS  Google Scholar 

  • Hollamby S, Afema-Azikuru J, Waigo S, Cameron K, Gandolf AR, Norris A, Sikarskie JG (2006) Suggested guidelines for use of avian species as biomonitors. Environ Monit Assess 118:13–20

    CAS  Google Scholar 

  • Honda K, Sahrul M, Hidaka H, Tatsukawa R (1983) Organ and tissue distribution of heavy metals, and their growth-related changes in Antarctic fish, Pagothenia borchgrevinki. Agric Biol Chem 47:2521–2532

    CAS  Google Scholar 

  • Honda K, Yamamoto Y, Hidaka H, Tatsukawa R (1986) Heavy metal accumulations in Adelin penguin Pygoscelis adeliae, and their variations with the reproductive processes. Mem Natl Inst Polar Res 40:443–453

    Google Scholar 

  • Hoshyari E, Pourkhabbaz A, Mansouri B (2012) Contaminations of metal in tissues of Siberian gull Larus heuglini: gender, age, and tissue differences. Bull Environ Contam Toxicol 89:102–106

    CAS  Google Scholar 

  • Houserová P, Kubáň V, Kracmar S, Sitko J (2007) Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environ Pollut 145:185–194

    Google Scholar 

  • Hoyo J, Elliott A, Sargatal J (1996) Handbook of the birds of the world, Hoatzin to Auks, vol 3. Lynx Edicions, Barcelona

    Google Scholar 

  • Hughes KD, Ewins PJ, Clark KE (1997) A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North America Great Lakes. Environ Contam Toxicol 33:441–452

    CAS  Google Scholar 

  • Hunter BA, Johnson MS, Thompson DJ (1987) Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. II. Invertebrates. J Appl Ecol 24:587–599

    CAS  Google Scholar 

  • Hutton M (1981) Accumulation of heavy metals and selenium in three seabird species from the United Kingdom. Environ Pollut A (2):129–145

    CAS  Google Scholar 

  • Jæger I, Hop H, Gabrielsen G (2009) Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci Total Environ 407:4744–4751

    Google Scholar 

  • Janaydeh M, Ismail A, Zulkifli SZ, Bejo MH, Aziz NA, Taneenah A (2016) The use of feather as an indicator for heavy metal contamination in house crow (Corvus splendens) in the Klang area, Selangor, Malaysia. Environ Sci Pollut Res Int 23(21):22059–22071

    CAS  Google Scholar 

  • Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure a review of the literature and a risk estimate. Scand J Work Environ Health 24:1–51

    Google Scholar 

  • Johansen P, Hansen MM, Asmund G, Nielsen PB (1991) Marine organisms as indicators of heavy metal pollution-experience from 16 years of monitoring at a lead zinc mine in Greenland. Chem Ecol 5:35–55

    CAS  Google Scholar 

  • Kaur S, Kamli MR, Ali A (2011) Role of As and its resistance in nature. Can J Microbiol 57:769–774

    CAS  Google Scholar 

  • Kendall RJ, Scanlon PF, Veit HP (1983) Histologic and ultrastructural lesions of mourning doves (Zenaida macroura) poisoned by lead shot. Poult Sci 62:952–956

    CAS  Google Scholar 

  • Kim EY, Ichihashi H, Saeki K, Atrashkevich G, Tanabe S, Tatsukawa R (1996a) Metal accumulation in tissues of seabirds from Chaun, northeast Siberia, Russia. Environ Pollut 92:247–252

    CAS  Google Scholar 

  • Kim EY, Murakami T, Saeki K, Tatsukawa R (1996b) Mercury levels and its chemical form in tissues and organs of seabirds. Arch Environ Contam Toxicol 30:259–266

    CAS  Google Scholar 

  • Kim EY, Saeki K, Tanabe S, Tanaka H, Tatsukawa R (1996c) Specific accumulation of mercury and selenium in seabirds. Environ Pollut 94:261–265

    CAS  Google Scholar 

  • Kim EY, Goto R, Tanabe S, Tanaka H, Tatsukawa R (1998) Distribution of 14 elements in tissues and organs of oceanic seabirds. Arch Environ Contam Toxicol 35:638–645

    CAS  Google Scholar 

  • Kjellstrom T (1986) Renal effects. In: Friberg L, Elinder CG, Kjellstrom T, Nordberg GF (eds) Cadmium and health: a toxicological and epidemiological appraisal, vol 2., Effects and response. CRC Press, Boca Raton, pp 21–109

    Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    CAS  Google Scholar 

  • Koeman JH, Peeters WH, Koudstaal-Hol CH, Tijoe PS, Goeij JJ (1973) Mercury selenium correlations in marine mammals. Nature 245:385–386

    CAS  Google Scholar 

  • Kojadinovic J, Le Corre M, Cosson R, Bustamante P (2007) Trace elements in three marine birds breeding on Reunion Island (Western Indian Ocean) part 1: factors influencing their bioaccumulation. Arch Environ Contam Toxicol 52:418–430

    CAS  Google Scholar 

  • Kubota R, Kunito T, Tanabe S (2001) Arsenic accumulation in the liver of marine mammals. Environ Pollut 115:303–312

    CAS  Google Scholar 

  • Kubota R, Kunito T, Tanabe S, Ogi H, Shibata Y (2002) Maternal transfer of arsenic to eggs of black-tailed gull (Larus crassirostris) from Rishiri Island, Japan. Appl Organomet Chem 16:463–468

    Google Scholar 

  • Kunito T, Kubota R, Fujihara J, Agusa T, Tanabe S (2008) Arsenic in marine mammals, seabirds, and sea turtles. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 31–69

    Google Scholar 

  • Lamborg CH, Rolfhus KR, Fitzgerald WF, Kim G (1999) The atmospheric cycling and air−sea exchange of mercury species in the South and equatorial Atlantic Ocean. Deep-Sea Res II Top Stud Oceanogr 46:957–977

    CAS  Google Scholar 

  • Leonzio C, Fossi C, Focardi S (1986) Lead, mercury, cadmium and selenium in two species of gull feeding on inland dumps, and in marine areas. Sci Total Environ 57:121–127

    CAS  Google Scholar 

  • Lewis SA, Furness RW (1991) Mercury accumulation and excretion in laboratory reared black-headed gull Larus ridibundus chicks. Arch Environ Contam Toxicol 21:316–320

    CAS  Google Scholar 

  • Lewis SA, Furness RW (1993) The role of eggs in mercury excretion by Quail Coturnix coturnix and the implications for monitoring mercury pollution by analysis of feathers. Ecotoxicology 2:55–64

    CAS  Google Scholar 

  • Lewis SA, Becker PH, Furness RW (1993) Mercury levels in eggs, tissues, and feathers of Herring Gulls Larus argentatus from the German Wadden Sea coast. Environ Pollut 80:29–299

    Google Scholar 

  • Li JL, Li HX, Li S, Tang ZX, Xu SW, Wang XL (2010) Oxidative stress-mediated cytotoxicity of cadmium in chicken splenic lymphocytes. Pol J Environ Stud 5:947–956

    Google Scholar 

  • Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C (2007) A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36:19–32

    CAS  Google Scholar 

  • Longcore JR, Locke LN, Bagley G, Andrews R (1974) Significance of lead residues in mallard tissues. Special scientific report – wildlife. U.S. Fish and Wildlife Service, Washington

    Google Scholar 

  • Lucia M, André JM, Gontier K, Diot N, Veiga J, Davail S (2010) Trace element concentrations (Mercury, Cadmium, Copper, Zinc, Lead, Aluminium, Nickel, Arsenic, and Selenium) in some aquatic birds of the southwest Atlantic coast of France. Arch Environ Contam Toxicol 58:844–853

    CAS  Google Scholar 

  • Lundholm CE (1995) Effects of methyl mercury at different dose regimes on eggshell formation and some biochemical characteristics of the eggshell gland mucosa of the domestic fowl. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 110:23–28

    CAS  Google Scholar 

  • Majidi Y, Bahramifar N, Ghasempouri SM (2015) Pattern of mercury accumulation in different tissues of migratory and resident birds: Western reef heron (Egretta gularis) and Siberian gull (Larus heuglini) in Hara International Wetland–Persian Gulf. Environ Monit Assess 187:4082

    Google Scholar 

  • Mallory ML, Mahon L, Tomlik MD, White C, Milton GR, Spooner I (2015) Colonial marine birds influence island soil chemistry through biotransport of trace elements. Water Air Soil Pollut 226:31

    Google Scholar 

  • Mansouri B, Pourkhabbaz A, Babaei H, Hoshyari E (2012) Heavy metal contamination in feathers of Western Reef Heron (Egretta gularis) and Siberian gull (Larus heuglini) from Hara biosphere reserve of Southern Iran. Environ Monit Assess 184:6139–6145

    CAS  Google Scholar 

  • Marafante E, Vahter M, Envall J (1985) The role of the methylation in the detoxication of arsenate in the rabbit. Chem Biol Interact 56:225–238

    CAS  Google Scholar 

  • Mason R, Choi A, Fitzgerald W, Hammerschmidt C, Lamborg C, Soerensen A, Sunderland E (2012) Mercury biogeochemical cycling in the ocean and policy implications. Environ Res 119:101–117

    CAS  Google Scholar 

  • Matta G, Gjyli L (2016) Mercury, lead and arsenic: impact on environment and human health. J Chem Pharm Sci 9:718–725

    CAS  Google Scholar 

  • Mayer DR, Kosmus W, Pogglitsch H, Mayer D, Beyer W (1993) Essential trace elements in humans. Serum arsenic concentrations in hemodialysis patients in comparison to healthy controls. Biol Trace Elem Res 37:27–38

    CAS  Google Scholar 

  • Mazloomi S, Esmaeili A, Ghasempoori SM, Omidi A (2008) Mercury distribution in liver, kidney, muscle and feathers of Caspian Sea Common Cormorant (Phalacrocorax carbo). Res J Environ Sci (6):433–437

    CAS  Google Scholar 

  • Mehlum F (1990) The birds and mammals of Svalbard. Polarhandbok no. 5, Norsk Polarinstitutt, Oslo

    Google Scholar 

  • Mendes P, Eira C, Torres J, Soares AM, Melo P, Vingada J (2008) Toxic element concentration in the Atlantic gannet Morus bassanus (Pelecaniformes, Sulidae) in Portugal. Arch Environ Contam Toxicol 55:503–509

    CAS  Google Scholar 

  • Misztal-Szkudlińska M, Szefer P, Konieczka P, Namieśnik J (2011) Biomagnification of mercury in trophic relation of Great Cormorant (Phalacrocorax carbo) and fish in the Vistula Lagoon, Poland. Environ Monit Assess 176(1–4):439–449

    Google Scholar 

  • Monteiro LR, Furness RW (1995) Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut 80:851–870

    CAS  Google Scholar 

  • Monteiro LR, Furness RW (2001) Kinetics, dose-response, and excretion of methylmercury in free-living adult Cory’s shearwaters. Environ Sci Technol 35:739–746

    CAS  Google Scholar 

  • Monteiro LR, Granadeiro JP, Furness RW (1998) Relationship between mercury levels and diet in Azores seabirds. Mar Ecol Prog Ser 166:259–265

    CAS  Google Scholar 

  • Monteiro LR, Granadeiro JP, Furness RW, Oliveira P (1999) Contemporary patterns of mercury contamination in the Portuguese Atlantic inferred from mercury concentrations in seabird tissues. Mar Environ Res 47(2):137–156

    CAS  Google Scholar 

  • Morand-Ferron J, Sol D, LeFebvre L (2007) Food stealing in birds: brain or brawn? Anim Behav 74(6):1725–1734

    Google Scholar 

  • Muirhead SJ, Furness RW (1988) Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Mar Pollut Bull 19:278–283

    CAS  Google Scholar 

  • Munoz RV, Hacker CS, Gesell TF (1976) Environmentally acquired lead in the laughing gull, Larus atricilla. J Wildl Dis 12:139–143

    CAS  Google Scholar 

  • Nam DH, Anan Y, Ikemoto T, Okabe Y, Kim EY, Subramanian A, Saeki K, Tanabe S (2005) Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. Environ Pollut 134:503–514

    CAS  Google Scholar 

  • Navarro G, Jerez S, Farinós P, Robledano F, Motas M (2010) Evaluación de la exposición a elementos inorgánicos (Cr, Mn, Ni, Cu, Zn, As, Se, Cd y Pb) en cormoranes grandes (Phalacrocorax carbo sinensis) de la laguna costera del Mar Menor de Murcia. Anales de Veterinaria Murcia 26:97–110

    Google Scholar 

  • Nicholson JK (1981) The comparative distribution of zinc, cadmium and mercury in selected tissues of the herring gull (Larus argentatus). Comp Biochem Physiol C Comp Pharmacol 68:91–94

    Google Scholar 

  • Nicholson JK, Osborn D (1983) Kidney lesions in pelagic seabirds with high tissue levels of cadmium and mercury. J Zool 200:99–118

    CAS  Google Scholar 

  • Nielsen C, Dietz R (1989) Heavy metals in Greenland seabirds. Commission for Scientific Research in Greenland

    Google Scholar 

  • Norheim G (1987) Levels and interactions of heavy metals in sea birds from Svalbard and the Antarctic. Environ Pollut 47:83–94

    CAS  Google Scholar 

  • Nriagu J (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    CAS  Google Scholar 

  • Ochoa-Acuña H, Sepúlveda MS, Gross TS (2002) Mercury in feathers from Chilean birds: influence of location, feeding strategy, and taxonomic. Mar Pollut Bull 44:340–349

    Google Scholar 

  • Ohlendorf HM, Hothem RL, Bunck CM, Marois KC (1990) Bioaccumulation of selenium in birds at Kesterson Reservoir, California. Arch Environ Contam Toxicol 19:495–507

    CAS  Google Scholar 

  • Ollason J, Dunnet G (1988) Variation in breeding success in fulmars. In: Clutton-Brock TH (ed) Reproductive success: studies of individual variations in contrasting breeding system. University of Chicago Press, Chicago

    Google Scholar 

  • Olson OE, Novacek EJ, Whitehead EI, Palmer IS (1970) Investigations on selenium in wheat. Phytochemistry 9:1181–1188

    CAS  Google Scholar 

  • Olsson V (1958) Dispersal migration, longevity and death causes of Strix aluca, Buteo buteo, Ardea cinerea and Larus argentatus: a study based on recoveries of birds ringed in Fenno-Scandia. Almqvist & Wiksell, Stockholm

    Google Scholar 

  • Orlowski G, Polechonski R, Dobicki W, Zawada Z (2007) Heavy metal concentrations in the tissues of the Black-headed Gull Larus ridibundus L. nesting in the dam reservoir in south-western Poland. Pol J Ecol 55:783

    CAS  Google Scholar 

  • Oro D, Bosch M, Ruiz X (1995) Effects of a trawling moratorium on the breeding success of the yellow-legged gull Larus cachinnans. Ibis 137:547–549

    Google Scholar 

  • Oro D, Ruiz X, Jover L, Pedrocchi V, González-Solís J (1997) Diet and adult time budgets of Audouin’s Gull Larus audouinii in response to changes in commercial fisheries. Ibis 139:631–637

    Google Scholar 

  • Osborn D, Harris M, Nicholson J (1979) Comparative tissue distribution of mercury, cadmium and zinc in three species of pelagic seabirds. Comp Biochem Physiol C Comp Pharmacol 64:61–67

    Google Scholar 

  • Pain D (1987) Lead poisoning in waterfowl: an investigation of sources and screening techniques. University of Oxford, Oxford

    Google Scholar 

  • Palmisano F, Cardellicchio N, Zambonin PG (1995) Speciation of mercury in dolphin liver: a two-stage mechanism for the demethylation accumulation process and role of selenium. Mar Environ Res 40(2):109–121

    CAS  Google Scholar 

  • Pařízek J, Ošťádalová I (1967) The protective effect of small amounts of selenite in sublimate intoxication. Cell Mol Life Sci 23:142–143

    Google Scholar 

  • Peakall D, Burger J (2003) Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. Ecotoxicol Environ Saf 56:110–121

    CAS  Google Scholar 

  • Perco F, Leonzio C, Focardi S, Fossi C, Renzoni A (1983) Intossicazione da piombo in due Cigni reali della laguna d i Marano (nord-est Italia). Avocetta 7:105–115

    Google Scholar 

  • Pérez-López M, Hermoso de Mendoza M, López Beceiro A, Soler Rodríguez F (2008) Heavy metal (Cd, Pb, Zn) and metalloid (As) content in raptor species from Galicia (NW Spain). Ecotoxicol Environ Saf 70(1):154–162

    Google Scholar 

  • Pilastro A, Congiu L, Tallandini L, Turchetto M (1993) The use of bird feathers for the monitoring of cadmium pollution. Arch Environ Contam Toxicol 24(3):355–358

    CAS  Google Scholar 

  • Pon J, Beltrame O, Marcovecchio J, Favero M, Gandini P (2011) Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross Thalassarche melanophris attending the Patagonian Shelf. Mar Environ Res 72:40–45

    Google Scholar 

  • Porkas MA, Kneeland MR (2009) Understanding lead uptake and effects across species lines: a conservation medicine approach. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise

    Google Scholar 

  • Rajaei F, Sari A, Bahramifar N, Ghasempouri SM, Savabieasfahani M (2010) Mercury concentration in 3 species of gulls, Larus ridibundus, Larus minutus, Larus canus, from South coast of the Caspian Sea, Iran. Bull Environ Contam Toxicol 84:716–719

    CAS  Google Scholar 

  • Rattner B, Heath A (1995) Environmental factors affecting contaminant toxicity in aquatic and terrestrial vertebrates. In: Hoffman DJ, Rattner BA, Allen Burton G Jr, Cairns J Jr (eds) Handbook of ecotoxicology. Chapter 22. Lewis, Boca Raton, pp 519–535

    Google Scholar 

  • Redig PT, Lawler EM, Schwartz S, Dunnette JL, Stephenson B, Duke GE (1991) Effects of chronic exposure to sublethal concentrations of lead acetate on heme synthesis and immune function in red-tailed hawks. Arch Environ Contam Toxicol 21:72–77

    CAS  Google Scholar 

  • Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed populations. Environ Res 77:68–72

    CAS  Google Scholar 

  • Robberecht H, Deelstra H, Vanden Berghe D, Van Grieken R (1983) Metal pollution and selenium distributions in soils and grass near a non-ferrous plant. Sci Total Environ 29:229–241

    CAS  Google Scholar 

  • Ruuskanen S, Laaksonen T, Morales T, Moreno J, Mateo J, Belskii R, Bushuev A, Järvinen A, Kerimov A, Krams I, Morosinotto C, Mänd R, Orell M, Qvarnström A, Slate F, Tilgar V, Visser ME, Winkel W, Zang H, Eeva T (2014) Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (Ficedula hypoleuca). Environ Sci Pollut Res 21:3304–3317

    CAS  Google Scholar 

  • Saeki K, Okabe Y, Kim E, Tanabe S, Fukuda M, Tatsukawa R (2000) Mercury and cadmium in common cormorants (Phalacrocorax carbo). Environ Pollut 108:249–255

    CAS  Google Scholar 

  • Salibian A, Montalti D (2009) Physiological and biochemical aspects of the avian uropygial gland. Braz J Biol 69:437–446

    CAS  Google Scholar 

  • Samelius G, Alisauskas R (1999) Diet and growth of glaucous gulls at a large Arctic goose colony. Can J Zool C 77:1327–1331

    Google Scholar 

  • Sánchez-Virosta P, Espín S, García-Fernández AJ, Eeva T (2015) A review on exposure and effects of arsenic in passerine birds. Sci Total Environ 512–513:506–525

    Google Scholar 

  • Sandersons G, Bellrose F (1986) A review of the problems of lead poisoning in waterfowl. Natural History Survey Special Publications 4

    Google Scholar 

  • Sanz-Gallén P, Nogué S, Corbella J (1993) Intoxicaciones por metales. In: Marruecos L, Nogué S, Nolla J (eds) Toxicología clínica. Springer-Verlag Ibérica, Barcelona, pp 275–291

    Google Scholar 

  • Savinov V, Gabrielsen G, Savinova T (2003) Cadmium, zinc, copper, arsenic, selenium and mercury in seabirds from the Barents Sea: levels, inter-specific and geographical differences. Sci Total Environ 306:133–158

    CAS  Google Scholar 

  • Scheifler R, Coeurdassier M, Morilhat C, Bernard N, Faivre B, Flicoteaux P, Giraudoux P, Noël M, Piotte P, Rieffel D, de Vaufleury A, Badot PM (2006) Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci Total Environ 371(1-3):197–205

    CAS  Google Scholar 

  • Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ Pollut 46:263–295

    CAS  Google Scholar 

  • Scheuhammer A, Braune B, Chan HM, Frouin H, Krey A, Letcher R, Loseto L, Noël M, Ostertag S, Ross P, Wayland M (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509-510:91–103

    CAS  Google Scholar 

  • Schwartz J (1994) Low-level lead exposure and children’s IQ: a meta-analysis and search for athreshold. Environ Res 65:42–55

    CAS  Google Scholar 

  • Sepúlveda M, González D (2014) Comparison of heavy metals from resident Larus dominicanus and migratory Leucophaeus pipixcan collected in Talcahuano, Chile. Arch Med Vet 46:299–304

    Google Scholar 

  • Sileo L, Fefer SI (1987) Paint chip poisoning of Laysan albatross at Midway atoll. J Wildl Dis 23:432–437

    CAS  Google Scholar 

  • Skoric S, Visnjić-Jeftic ZJ, Jaric I, Djiknovic V, Mickovic B, Nikcevic M, Lenhardt M (2012) Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio). Ecotoxicol Environ Saf 80:244–251

    CAS  Google Scholar 

  • Sloth JJ, Larsen E, Julshamn K (2005) Report on three aliphatic dimethylarsinoyl compounds as common minor constituents in marine samples. An investigation using high-performance liquid chromatography/inductively coupled plasma mass spectrometry and electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 19:227–235

    CAS  Google Scholar 

  • Snoeijs T, Dauwe T, Pinxten R, Darras VM, Arckens L, Eens M (2005) The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch (Taeniopygia guttata). Environ Pollut 134:123–132

    CAS  Google Scholar 

  • Spaans AL (1971) On the feeding ecology of the Herring Gull Larus argentatus Pont. in the northern part of the Netherlands. Ardea 59:73–188

    Google Scholar 

  • Spalding MG, Frederick PC, McHill HC, Bouton SN, McDowell L (2000) Methylmercury accumulation in tissues and its effects on growth and appetite in captive great egrets. J Wildl Dis 36:411–422

    CAS  Google Scholar 

  • St Clair CT, Baird P, Ydenberg R, Elner R, Bendell LI (2015) Trace elements in Pacific Dunlin (Calidris alpina pacifica): patterns of accumulation and concentrations in kidneys and feathers. Ecotoxicology 24(1):29–44

    CAS  Google Scholar 

  • Stanley TR, Spann JW, Smith GJ, Rosscoe R (1994) Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival. Arch Environ Contam Toxicol 26:444–451

    CAS  Google Scholar 

  • Steinnes E (2013) Lead. In: Alloway B (ed) Heavy metals in soils. Environmental pollution, vol 22. Springer, Dordrecht

    Google Scholar 

  • Stewart FM, Phillips RA, Bartle JA, Craig J, Shooter D (1999) Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar Ecol Prog Ser J 178:295–305

    CAS  Google Scholar 

  • Stickel L, Stickel W, McLane M, Bruns M (1977) Prolonged retention of methyl mercury by mallard drakes. Bull Environ Contam Toxicol 18:393–400

    CAS  Google Scholar 

  • Strode SA, Jaegle L, Selin NE, Jacob DJ, Park RJ, Yantosca RM, Mason RP, Slemr F (2007) Air-sea exchange in the global mercury cycle. Global Biogeochem Cycles 21(1)

    Google Scholar 

  • Swensson Å, Ulfvarson U (1968) Distribution and excretion of mercury compounds in rats over a long period after a single injection. Acta Pharmacol Toxicol 26:273–283

    CAS  Google Scholar 

  • Szumiło E, Szubska M, Meissner W, Bełdowska M, Falkowska L (2013) Mercury in immature and adults herring gulls (Larus argentatus) wintering on the Gulf of Gdańsk area. Oceanol Hydrobiol Stud 42:260–267

    Google Scholar 

  • Taggart MA, Figuerola J, Green AJ, Mateo R, Deacon C, Osborn D, Meharg AA (2006) After the Aznalcóllar mine spill: arsenic, zinc, selenium, lead and copper levels in the livers and bones of five waterfowl species. Environ Res 100:349–361

    CAS  Google Scholar 

  • Talloen W, Lens L, Van Dongen S, Matthysen E (2008) Feather development under environmental stress: lead exposure effects on growth patterns in Great Tits Parus major. Bird Study 55:108–117

    Google Scholar 

  • Tasker ML, Camphuysen CJ, Cooper J, Garthe S, Montevecchi W, Blaber SJM (2000) The impacts of fishing on marine birds. ICES J Mar Sci 7:531–547

    Google Scholar 

  • Thompson DR (1996) Mercury in birds and terrestrial mammals. In: Beyer WN, Heinz GH, Redman-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis, Boca Raton, pp 341–356

    Google Scholar 

  • Thompson DR, Stewart FM, Furness RW (1990) Using seabirds to monitor mercury in marine environments: the validity of conversion ratios for tissue comparisons. Mar Pollut Bull 21:339–342

    CAS  Google Scholar 

  • Thompson DR, Bearhop S, Speakman JR, Furness RW (1998) Feathers as a means of monitoring mercury in seabirds: insights from stable isotope analysis. Environ Pollut 101(2):193–200

    CAS  Google Scholar 

  • Tsipoura N, Burger J, Feltes R, Yacabucci J, Mizrahi D, Jeitner C, Gochfeld M (2008) Metal concentrations in three species of passerine birds breeding in the Hackensack Meadowlands of New Jersey. Environ Res 107:218–228

    CAS  Google Scholar 

  • UNEP, Global Mercury Assessment (2013) Sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva

    Google Scholar 

  • Vahter M, Concha G (2001) Role of metabolism in arsenic toxicity. Basic Clin Pharmacol Toxicol 89:1–5

    CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  Google Scholar 

  • Wals PM (1990) The use of seabirds as monitors of heavy metals in the marine environment. In: Furness RW, Rainbow PS (eds) Heavy metals in marine environment. CRC Press, Boca Raton, pp 183–204

    Google Scholar 

  • Watson PS (1981) Seabird observations from commercial trawlers in the Irish Sea. British Birds 74:82–89

    Google Scholar 

  • Wenzel C, Gabrielsen G (1995) Trace element accumulation in three seabird species from Hornoya, Norway. Arch Environ Contam Toxicol 29:198–206

    CAS  Google Scholar 

  • White DH, Finley MT, Ferrell JF (1978) Histopathologic effects of dietary cadmium on kidneys and testes of mallard ducks. J Toxicol Environ Health 4:551–558

    CAS  Google Scholar 

  • Whitehead P, Bauchot P, Hureau M, Nielsen J, Tortonese J (1986) Fishes of the North-eastern Atlantic and the Mediterranean, vol III. UNESCO, Paris

    Google Scholar 

  • WHO (2000) Air quality guidelines for Europe, 2nd edn. WHO Regional Publications, Copenhagen, European Series, No. 91, 288 pp

    Google Scholar 

  • WHO (2006) Environmental Health Criteria 237. Principles for evaluating health risks in children associated with exposure to chemicals

    Google Scholar 

  • Wiener J, Bodaly R, Brown S, Lucotte M, Newman M, Porcella D, Reash R, Swain E (2007) Monitoring and evaluating trends in methylmercury accumulation in aquatic biota. In: Harris R, Krabbenhoft DP, Mason R, Murray MW, Reash R, Saltman T (eds) Ecosystem responses to mercury contamination: indicators of change. CRC Press, Boca Raton, pp 88–122

    Google Scholar 

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    CAS  Google Scholar 

  • Yasumoto K, Suzuki T, Yoshida M (1988) Identification of selenomethionine in soybean protein. J Agric Food Chem 36:463–467

    CAS  Google Scholar 

  • Zaccaroni A, Amorena M, Naso B, Castellani G, Lucisano A, Stracciari GL (2003) Cadmium, chromium and lead contamination of Athene noctua, the little owl, of Bologna and Parma, Italy. Chemosphere 52:1251–1258

    CAS  Google Scholar 

  • Zamani-Ahmadmahmoodi R, Esmaili-Sari A, Savabieasfahani M, Bahramifar N (2009) Cattle egret (Bubulcus ibis) and Little egret (Egretta garzetta) as monitors of mercury contamination in Shadegan wetlands of south-western Iran. Environ Monit Assess 166:371–377

    Google Scholar 

Download references

Acknowledgments

To the Junta de Extremadura, Consejería de Economía e Infraestructuras (GR15114), and the Fondo Europeo de Desarrollo Regional (FEDER)/European Regional Development Fund (ERDF) for supporting the language correction taxes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Prado Míguez-Santiyán or David Hernández-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vizuete, J., Pérez-López, M., Míguez-Santiyán, M.P., Hernández-Moreno, D. (2018). Mercury (Hg), Lead (Pb), Cadmium (Cd), Selenium (Se), and Arsenic (As) in Liver, Kidney, and Feathers of Gulls: A Review. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 247. Reviews of Environmental Contamination and Toxicology, vol 247. Springer, Cham. https://doi.org/10.1007/398_2018_16

Download citation

Publish with us

Policies and ethics