Skip to main content

Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System

  • Chapter
Reviews of Environmental Contamination and Toxicology Volume 241

Abstract

This review summarizes the findings of the most recent studies, published from 2000 to 2016, which focus on the biogeochemical behavior of Cd in soil-plant systems and its impact on the ecosystem. For animals and people not subjected to a Cd-contaminated environment, consumption of Cd contaminated food (vegetables, cereals, pulses and legumes) is the main source of Cd exposure. As Cd does not have any known biological function, and can further cause serious deleterious effects both in plants and mammalian consumers, cycling of Cd within the soil-plant system is of high global relevance.

The main source of Cd in soil is that which originates as emissions from various industrial processes. Within soil, Cd occurs in various chemical forms which differ greatly with respect to their lability and phytoavailability. Cadmium has a high phytoaccumulation index because of its low adsorption coefficient and high soil–plant mobility and thereby may enter the food chain. Plant uptake of Cd is believed to occur mainly via roots by specific and non-specific transporters of essential nutrients, as no Cd-specific transporter has yet been identified. Within plants, Cd causes phytotoxicity by decreasing nutrient uptake, inhibiting photosynthesis, plant growth and respiration, inducing lipid peroxidation and altering the antioxidant system and functioning of membranes. Plants tackle Cd toxicity via different defense strategies such as decreased Cd uptake or sequestration into vacuoles. In addition, various antioxidants combat Cd-induced overproduction of ROS. Other mechanisms involve the induction of phytochelatins, glutathione and salicylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas G, Saqib M, Akhtar J, Murtaza G, Shahid M (2015) Effect of salinity on rhizosphere acidification and antioxidant activity of two acacia species. Can J For Res 45:124–129

    CAS  Google Scholar 

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    CAS  Google Scholar 

  • Aghababaei F, Raiesi F (2015) Mycorrhizal fungi and earthworms reduce antioxidant enzyme activities in maize and sunflower plants grown in Cd-polluted soils. Soil Biol Biochem 86:87–97

    CAS  Google Scholar 

  • Agnieszka B, Tomasz C, Jerzy W (2014) Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology 23:1234–1244

    CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2015) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul. doi:10.1007/s00344-015-9534-5

    Article  Google Scholar 

  • Akhter F, McGarvey B, Macfie SM (2012) Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors. J Plant Physiol 169:1821–1829

    CAS  Google Scholar 

  • Akoumianakis KA, Passam HC, Barouchas PE, Moustakas NK (2008) Effect of cadmium on yield and cadmium concentration in the edible tissues of endive (Cichorium endivia L.) and rocket (Eruca sativa Mill.). J Food Agric Environ 6:206–209

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    CAS  Google Scholar 

  • Almås AR, Singh BR (2001) Plant uptake of cadmium-109 and zinc-65 at different temperature and organic matter levels. J Environ Qual 30:869–877

    Google Scholar 

  • Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135

    CAS  Google Scholar 

  • Andosch A, Affenzeller MJ, Lütz C, Lütz-Meindl U (2012) A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J Plant Physiol 169:1489–1500

    CAS  Google Scholar 

  • Andresen E, Küpper H (2013) Cadmium toxicity in plants. Met Ions Life Sci 11:395–413

    CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M et al (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Antolín MC, Muro I, Sánchez-Díaz M (2010) Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environ Exp Bot 68:75–82

    Google Scholar 

  • Antunes PMC, Hale BA (2006) The effect of metal diffusion and supply limitations on conditional stability constants determined for durum wheat roots. Plant and Soil 284:229–241

    CAS  Google Scholar 

  • Antunes PMC, Kreager NJ (2014) Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach. Environ Toxicol Chem. doi:10.1002/etc.2688

    Article  Google Scholar 

  • Aravind P, Prasad MNV, Malec P, Waloszek A, Strzałka K (2009) Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J Trace Elem Med Biol 23:50–60

    CAS  Google Scholar 

  • Ardestani MM, van Gestel CAM (2013) Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida. Environ Pollut 180:122–130

    CAS  Google Scholar 

  • Armas T, Pinto AP, Varennes A, Mourato MP, Martins LL, Gonçalves MLS, Mota AM (2014) Comparison of cadmium-induced oxidative stress in Brassica juncea in soil and hydroponic cultures. Plant Soil. doi:10.1007/s11104-014-2330-3

    Article  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    CAS  Google Scholar 

  • Asgher M, Khan NA, Iqbal M, Khan R, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61

    CAS  Google Scholar 

  • ATSDR (2012) Agency for Toxic Substance and Disease Registry, U.S. toxicological profile for cadmium. Department of Health and Humans Services, Public Health Service, Centers for Disease Control, Atlanta, Georgia, USA

    Google Scholar 

  • Austruy A, Shahid M, Xiong T, Castrec M, Payre V, Niazi NK, Sabir M, Dumat C (2014) Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. J Soil Sediments 14:666–678

    Google Scholar 

  • Bade R, Oh S, Shin WS (2012) Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations. Sci Total Environ 416:127–136

    CAS  Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81:563–570

    CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    CAS  Google Scholar 

  • Baldantoni D, Morra L, Zaccardelli M, Alfani A (2016) Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol Environ Saf 123:89–94

    CAS  Google Scholar 

  • Bandyopadhyay A, Mukherjee A (2011) Sensitivity of Allium and Nicotiana in cellular and acellular comet assays to assess differential genotoxicity of direct and indirect acting mutagens. Ecotoxicol Environ Saf 74:860–865

    CAS  Google Scholar 

  • Barber JL, Thomas GO, Kerstiens G, Jones KC (2004) Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environ Pollut 128:99–138

    CAS  Google Scholar 

  • Barrow NJ (1986) Reaction of anions and cations with variable-charge soils. Adv Agron 38:183–230

    Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C et al (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709

    CAS  Google Scholar 

  • Bashir H, Ahmad J, Bagheri R, Nauman M, Qureshi MI (2013) Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. Environ Exp Bot 94:19–32

    CAS  Google Scholar 

  • Behboodi BS, Samadi L (2004) Detection of apoptotic bodies and oligonucleosomal DNA fragments in cadmium-treated root apical cells of Allium cepa Linnaeus. Plant Sci 167:411–416

    CAS  Google Scholar 

  • Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Iudkin LI, Alekseev IV, Kozhemiakov AP (2004) Employment of associative bacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Mikrobiologiia 73:118–125

    CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    CAS  Google Scholar 

  • Belkadhi A, DeHaro A, Soengas P, Obregόn S, Cartea ME, Djebali W, Chaïbi W (2013) Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium. OMICS 17:398–406

    CAS  Google Scholar 

  • Belkadhi A, Haro AD, Obregon S, Chaïbi W, Djebali W (2015) Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.). Ecotoxicol Environ Saf 120:102–109

    CAS  Google Scholar 

  • Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:1004–1011

    CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    CAS  Google Scholar 

  • Bilodeau-Gauthier S, Paré D, Messier C, Bélanger N (2011) Juvenile growth of hybrid poplars on acidic boreal soil determined by environmental effects of soil preparation, vegetation control, and fertilization. Forest Ecol Manag 261:620–629

    Google Scholar 

  • Blair IA (2001) Lipid hydroperoxide-mediated DNA damage. Exp Gerontol 36:1473–1481

    CAS  Google Scholar 

  • Bolan N, Mahimairaja S, Kunhikrishnan A, Naidu R (2013) Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils. J Hazard Mater 261:725–732

    CAS  Google Scholar 

  • Bramley RGV (1990) Review: cadmium in New Zealand agriculture. New Zeal J Agr Res 33:505–519

    CAS  Google Scholar 

  • Breckle SW, Kahle H (1991) Geobotanyandecology. Prog Bot 52:391–406

    Google Scholar 

  • Burau RG, Kaita KY, Inouye TS, Miller M (1973) Chemical analysis of soil samples from the Salinis Valley, California for cadmium, zinc, and phosphate. Report to state water resources control board. University of California, Davis, Davis

    Google Scholar 

  • Cabaniss SE, Zhou Q, Maurice P, Chin Y-P, Aiken GR (2000) A log-normal distribution model for the molecular weight of aquatic fulvic acids. Environ Sci Technol 34:1103–1109

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (1999) Chemical hormesis: its historical foundations as biological hypothesis. Toxicol Pathol 27:195–216

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003a) Toxicology rethinks its central belief: hormesis demands a reappraisal of the way risks are assessed. Nature 421:691–692

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003b) The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol Sci 71:246–250

    CAS  Google Scholar 

  • Calace N, Petronio BM (2004) The role of organic matter on metal toxicity and bio-availability. Ann Chim 94:487–493

    CAS  Google Scholar 

  • Calderón-Preciado D, Matamoros V, Biel C, Save R, Bayona JM (2013) Foliar sorption of emerging and priority contaminants under controlled conditions. J Hazard Mater 260:176–182

    Google Scholar 

  • Castillo-Michel HA, Hernandez N, Martinez-Martinez A, Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL (2009) Coordination and speciation of cadmium in corn seedlings and its effects on macro- and micronutrients uptake. Plant Physiol Biochem 47:608–614

    CAS  Google Scholar 

  • Chamel A, Gaillardon P, Gauvrit C (1991) La pénétration foliaire des herbicides. In: Les herbicides: mode d’action et principes d’utilisation. Institut National de la Recherche Agronomique 75007, Paris, pp 8–49

    Google Scholar 

  • Chaney RL (2012) Chapter two—food safety issues for mineral and organic fertilizers. In : Donald L. Sparks (ed) Adv Agron. Academic, pp 51–116

    Google Scholar 

  • Chao Y-Y, Hong C-Y, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381

    CAS  Google Scholar 

  • Chavez E, He ZL, Stoffella PJ, Mylavarapu RS, Li YC, Moyano B, Baligar VC (2015) Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Sci Total Environ 533:205–214

    CAS  Google Scholar 

  • Chekmeneva E, Gusmão R, Díaz-Cruz JM, Ariño C, Esteban M (2011) From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments. Metallomics 3:838–846

    CAS  Google Scholar 

  • Chen L, Guo Y, Yang L, Wang Q (2007) SEC-ICP-MS and ESI-MS/MS for analyzing in vitro and in vivo Cd-phytochelatin complexes in a Cd-hyperaccumulator Brassica chinensis. J Anal At Spectrom 22:1403–1408

    CAS  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48:663–672

    CAS  Google Scholar 

  • Chen JH, Ni JC, Liu QL, Li SX (2012) Adsorption behavior of Cd(II) ions on humic acid-immobilized sodium alginate and hydroxyl ethyl cellulose blending porous composite membrane adsorbent. Desalination 285:54–61

    CAS  Google Scholar 

  • Chen C, Zhou Q, Cai Z (2014a) Effect of soil HHCB on cadmium accumulation and phytotoxicity in wheat seedlings. Ecotoxicology 23:1996–2004

    CAS  Google Scholar 

  • Chen Y, Wu P, Shao Y, Ying Y (2014b) Health risk assessment of heavy metals in vegetables grown around battery production area. Sci Agric 71:126–132

    CAS  Google Scholar 

  • Cherif J, Mediouni C, Ben Ammar W, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J Environ Sci (China) 23:837–844

    CAS  Google Scholar 

  • Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    Google Scholar 

  • Choppala G, Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391

    CAS  Google Scholar 

  • Chou T-S, Chao Y-Y, Kao CH (2012) Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. J Plant Physiol 169:478–486

    CAS  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    CAS  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci U S A 95:12043–12048

    CAS  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) The key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  Google Scholar 

  • Cobelo-García A, Santos-Echeandía J, Prego R, Nieto O (2005) Direct simultaneous determination of Cu, Ni and V in seawater using adsorptive cathodic stripping voltammetry with mixed ligands. Electroanalysis 17:906–911

    Google Scholar 

  • Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072

    CAS  Google Scholar 

  • Corguinha APB, Gonçalves VC, de Souza GA, de Lima WEA, Penido ES, Pinto CABP, Francisco EAB, Guilherme LRG (2012) Cadmium in potato and soybeans: do phosphate fertilization and soil management systems play a role? J Food Comp Anal 27:32–37

    CAS  Google Scholar 

  • Cortés‐Martínez R, Martínez‐Miranda V, Solache‐Ríos M, García‐Sosa I (2004) Evaluation of natural and surfactant‐modified zeolites in the removal of cadmium from aqueous solutions. Sep Sci Technol 39(11):2711–2730

    Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    CAS  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    CAS  Google Scholar 

  • Dabrin A, Durand CL, Garric J, Geffard O, Ferrari BJD, Coquery M (2012) Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment. Sci Total Environ 424:308–315

    CAS  Google Scholar 

  • Dahmani-Muller H, van Oort F, Balabane M (2001) Metal extraction by Arabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: a pot experiment. Environ Pollut 114:77–84

    CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1998) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Google Scholar 

  • Daud MK, Quiling H, Lei M, Ali B, Zhu SJ (2015) Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemosphere 120:309–320

    CAS  Google Scholar 

  • Degryse F, Shahbazi A, Verheyen L, Smolders E (2012) Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant. Plant Physiol 160:1097–1109

    CAS  Google Scholar 

  • Del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    Google Scholar 

  • Delmail D, Labrousse P, Hourdin P, Larcher L, Moesch C, Botineau M (2011) Physiological, anatomical and phenotypical effects of a cadmium stress in different-aged chlorophyllian organs of Myriophyllum alterniflorum DC (Haloragaceae). Environ Exp Bot 72:174–181

    CAS  Google Scholar 

  • Dempsey DMA, Vlot AC, Wildermuth MC, Klessiga DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:1–156

    Google Scholar 

  • Deng X, Xia Y, Hu W, Zhang H, Shen Z (2010) Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L. J Hazard Mater 180:722–729

    CAS  Google Scholar 

  • Deng G, Li M, Li H, Yin L, Li W (2014) Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). Aquat Bot 112:23–32

    CAS  Google Scholar 

  • Dguimi MH, Debouba M, Ghorbel MH, Gouia H (2009) Tissue-specific cadmium accumulation and its effects on nitrogen metabolism in tobacco (Nicotiana tabaccum, Bureley v. Fb9). C R Biol 332:58–68

    Google Scholar 

  • Dong J, Wu F, Zhang G (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666

    CAS  Google Scholar 

  • Douay F, Pruvot C, Waterlot C, Fritsch C, Fourrier H, Loriette A, Bidar G, Grand C, de Vaufleury A, Scheifler R (2009) Contamination of woody habitat soils around a former lead smelter in the North of France. Sci Total Environ 407:5564–5577

    CAS  Google Scholar 

  • Douchiche O, Chaïbi W, Morvan C (2012) Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: contribution of the basal stem compared to the root. J Hazard Mater 235–236:101–107

    Google Scholar 

  • Drazic G, Mihailovic N (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci 168:511–517

    CAS  Google Scholar 

  • Dumat C, Quenea K, Bermond A, Toinen S, Benedetti MF (2006) Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environ Pollut 142:521–529

    CAS  Google Scholar 

  • Duplay J, Semhi K, Errais E, Imfeld G, Babcsanyi I, Perrone T (2014) Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils (Rouffach, France): the impact of cultural practices. Geoderma 230–231:318–328

    Google Scholar 

  • Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M, Moulin P, Lepage M (2006) Fluorescent pseudomonads occuring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370:391–400

    CAS  Google Scholar 

  • Ďurčeková K, Huttová J, Mistrík I, Ollé M, Tamás L (2007) Cadmium induces premature xylogenesis in barley roots. Plant and Soil 290:61–68

    Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214:635–640

    CAS  Google Scholar 

  • Egle K, Römer W, Keller H (2003) Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie 23:511–518

    CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    CAS  Google Scholar 

  • Eikmann T, Kloke A, Eikmann S (1993) Environmental medical and toxicological assessment of soil contamination. In: Arendt F, Annokkée GJ, Bosman R, Brink WJVD (eds) Contaminated soil’93. Springer, Netherlands, pp 327–336

    Google Scholar 

  • El-Boshy ME, Risha EF, Abdelhamid FM, Mubarak MS, Hadda TB (2014) Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Biol. doi:10.1016/j.jtemb.2014.05.009

    Article  Google Scholar 

  • Emsley J (2011) Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Epelde L, Becerril JM, Barrutia O, González-Oreja JA, Garbisu C (2010) Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ Pollut 158:1576–1583

    CAS  Google Scholar 

  • Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Liu X, Liu M, Mariga AM, Zhu X et al (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147:147–151

    CAS  Google Scholar 

  • FAO/WHO (1978) Joint FAO/WHO Expert Committee on food additives. Technical report series. 631. Geneva

    Google Scholar 

  • FAO/WHO (2006) Joint FAO/WHO Food Standard Programme, codex committee on food additives and contaminants, 38th session. The Netherlands

    Google Scholar 

  • Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf 96:242–249

    CAS  Google Scholar 

  • Fässler E, Plaza S, Pairraud A, Gupta SK, Robinson B, Schulin R (2011) Expression of selected genes involved in cadmium detoxification in tobacco plants grown on a sulphur-amended metal-contaminated field. Environ Exp Bot 70:158–165

    Google Scholar 

  • Feng Z, Hu W, Amin S, Tang MS (2003) Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and -deficient human cells. Biochemistry 42:7848–7854

    CAS  Google Scholar 

  • Feng-tao L, Jian-min Q, Gao-yang Z, Li-hui L, Ping-ping F, Ai-fen T, Jian-tang X (2013) Effect of cadmium stress on the growth, antioxidative enzymes and lipid peroxidation in two kenaf (Hibiscus cannabinus L.) plant seedlings. J Integr Agri 12:610–620

    Google Scholar 

  • Fidalgo F, Freitas R, Ferreira R, Pessoa AM, Teixeira J (2011) Solanum nigrum L. antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environ Exp Bot 72:312–319

    CAS  Google Scholar 

  • Filipič M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res 733:69–77

    Google Scholar 

  • Flores-Caceres ML, Hattab S, Hattab S, Boussetta H, Banni M, Hernndez LE (2015) Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants. Plant Sci 233:165–173

    CAS  Google Scholar 

  • Fodor E, Szabó-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147(1):87–92

    CAS  Google Scholar 

  • Foltête A-S, Masfaraud J-F, Férard J-F, Cotelle S (2012) Is there a relationship between early genotoxicity and life-history traits in Vicia faba exposed to cadmium-spiked soils? Mutat Res 747:159–163

    Google Scholar 

  • Foucault Y, Lévêque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment. Chemosphere 93:1430–1435

    CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    CAS  Google Scholar 

  • Fritsch C, Giraudoux P, Cœurdassier M, Douay F, Raoul F, Pruvot C, Waterlot C, de Vaufleury A, Scheifler R (2010) Spatial distribution of metals in smelter-impacted soils of woody habitats: influence of landscape and soil properties, and risk for wildlife. Chemosphere 81:141–155

    CAS  Google Scholar 

  • Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant1[W][OA]. Plant Physiol 152:1796–1806

    CAS  Google Scholar 

  • Gad SC (2014) Cadmium. In: Wexler P (ed) Encycloped toxicol, 3rd edn. Academic, Oxford, pp 613–616

    Google Scholar 

  • Gallego SM, Benavídes MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    CAS  Google Scholar 

  • Gao Z, Bandosz TJ, Zhao Z, Han M, Qiu J (2009) Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater 167:357–365

    CAS  Google Scholar 

  • Garate A, Ramos I, Manzanares M, Lucena JJ (1993) Cadmium uptake and distribution in three cultivars of Lactuca sp. Bull Environ Contam Toxicol 50:709–716

    CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel J-P, Blein J-P, Ranjeva R, Montillet J-L (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    CAS  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    CAS  Google Scholar 

  • Goix S, Lévêque T, Xiong T-T, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194

    CAS  Google Scholar 

  • Gonçalves JF, Becker AG, Cargnelutti D, Tabaldi LA, Pereira LB, Battisti V, Spanevello RM, Morsch VM, Nicoloso FT, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 19:223–232

    Google Scholar 

  • Gonçalves JF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R, Rossato LV, Bisognin DA, Dressler VL, Flores EM et al (2009) Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem 47:814–821

    Google Scholar 

  • Gonneau C, Genevois N, Frérot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant and Soil 384:271–287

    CAS  Google Scholar 

  • Gratão PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP, Medici LO, Lea PJ, Azevedo RA (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67:387–394

    Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    CAS  Google Scholar 

  • Gu C-S, Liu L, Zhao Y-H, Deng Y, Zhu X, Huang S-Z (2014) Overexpression of Iris. lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana. Ecotoxicol Environ Saf 105:22–28

    CAS  Google Scholar 

  • Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630

    CAS  Google Scholar 

  • Guerrero NRV, Nahabedian DE, Wider EA (2000) Analysis of some factors that may modify the bioavailability of cadmium and lead by Biomphalaria glabrata. Environ Toxicol Chem 19(11):2762–2768

    CAS  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    CAS  Google Scholar 

  • Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166:20–31

    CAS  Google Scholar 

  • Guo H, Tian R, Zhu J, Zhou H, Pei D, Wang X (2012) Combined cadmium and elevated ozone affect concentrations of cadmium and antioxidant systems in wheat under fully open-air conditions. J Hazard Mater 209–210:27–33

    Google Scholar 

  • Gustafsson JP (2008) Visual MINTEQ. Version 2.60. Stockholm. http://www.lwr.kth.se/English/OurSoftware/vminteq/

  • Hagin N, Kono M (1955) A study on the cause of Itai-itai disease. In: Proceedings of the17th meeting of the Japanese Society of Clinical Surgeons (in Japanese)

    Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    CAS  Google Scholar 

  • Harrison RM, Chirgawi MB (1989) The assessment of air and soil as contributors of some trace metals to vegetable plants I: use of a filtered air growth cabinet. Sci Total Environ 83:13–34

    CAS  Google Scholar 

  • Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. J Environ Biol 30:165–174

    CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    CAS  Google Scholar 

  • Hayat S, Alyemeni MN, Hasan SA (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335

    CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    CAS  Google Scholar 

  • He HP, Guo JG, Zhu JX, Yang D (2001) An experimental study of adsorption capacity of Montmorillonite, Kaolinite and Illite for heavy metals. Acta Petrologica et Mineralogica 4:042

    Google Scholar 

  • Hédiji H, Djebali W, Belkadhi A, Cabasson C, Moing A, Rolin D (2015) Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: consequences on fruit production. S Afr J Bot 97:176–181

    Google Scholar 

  • Heinrichs H, Schulz-Dobrick B, Wedepohl KH (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochim Cosmochim Acta 44:1519–1533

    CAS  Google Scholar 

  • Helios-Rybicka E, Wójcik R (2012) Competitive sorption/desorption of Zn, Cd, Pb, Ni, Cu, and Cr by clay-bearing mining wastes. Appl Clay Sci 65–66:6–13

    Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J et al (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    CAS  Google Scholar 

  • Hernandez LE, Carpena‐Ruiz R, Gárate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    CAS  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    CAS  Google Scholar 

  • Hirsch D, Banin A (1990) Cadmium speciation in soil solutions. J Environ Qual 19:366–372

    CAS  Google Scholar 

  • Hodoshima H, Enomoto Y, Shoji K, Shimada H, Goto F, Yoshihara T (2007) Differential regulation of cadmium-inducible expression of iron-deficiency-responsive genes in tobacco and barley. Physiol Plant 129:622–634

    CAS  Google Scholar 

  • Holmgren GGS, Meyer MW, Chaney RL, Daniels RB (1993) Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. J Environ Qual 22:335–348

    CAS  Google Scholar 

  • Hossain Z, Makino T, Komatsu S (2012) Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean. J Proteomics 75:4151–4164

    CAS  Google Scholar 

  • Hovmand MF, Tjell JC, Mosbaek H (1983) Plant uptake of airborne cadmium. Environ Pollut Ser A Ecol Biol 30:27–38

    CAS  Google Scholar 

  • Howladar M (2014) A novel Moringa oleifera leaf extractcan mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants seed. Ecotoxicol Environ Saf 100:69–75

    CAS  Google Scholar 

  • Hu Y, Norton GJ, Duan G, Huang Y, Liu Y (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant and Soil 384:131–140

    CAS  Google Scholar 

  • Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158:1779–1788

    CAS  Google Scholar 

  • Huguet S, Bert V, Laboudigue A, Barthès V, Isaure M-P, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65

    CAS  Google Scholar 

  • Iannone MF, Rosales EP, Groppa MD, Benavides MP (2010) Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma 245:15–27

    CAS  Google Scholar 

  • Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ Exp Bot 109:201–211

    CAS  Google Scholar 

  • Inglot P, Lewinska A, Potocki L, Oklejewicz B, Tabecka-Lonczynska A, Koziorowski M, Bugno-Poniewierska M, Bartosz G, Wnuk M (2012) Cadmium-induced changes in genomic DNA-methylation status increase aneuploidy events in a pig Robertsonian translocation model. Mutat Res 747:182–189

    CAS  Google Scholar 

  • Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M (2000) Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiol 123:1029–1036

    CAS  Google Scholar 

  • Iqbal N, Masood A, Nazar R, Syeed S, Khan NA (2010) Photosynthesis, growth and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in cadmium tolerance. Agricult Sci China 9:519–527

    CAS  Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21:125–131

    CAS  Google Scholar 

  • Isaure M-P, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta Part B 61:1242–1252

    Google Scholar 

  • Ivanov VV (1996) Ekologicheskaya geokhimia elementov (in Russian). Ekologia, kn. 1–6, Moskva. Environmental Geochemistry of Elements Ecology, 1–6:Moscow

    Google Scholar 

  • Jakubowska D, Janicka-Russak M, Kabała K, Migocka M, Reda M (2015) Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. Plant Sci 234:50–59

    CAS  Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Google Scholar 

  • Jia L, He X, Chen W, Liu Z, Huang Y, Yu S (2013) Hormesis phenomena under Cd stress in a hyperaccumulator Lonicera japonica Thunb. Ecotoxicology 22:476–485

    CAS  Google Scholar 

  • Jiang XJ, Luo YM, Liu Q, Liu SL, Zhao QG (2004) Effects of cadmium on nutrient uptake and translocation by Indian Mustard. Environ Geochem Health 26:319–324

    CAS  Google Scholar 

  • Jiang J, Xu R, Jiang T, Li Z (2012) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229–230:145–150

    Google Scholar 

  • Jiao W, Chen W, Chang AC, Page AL (2012) Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ Pollut 168:44–53

    CAS  Google Scholar 

  • Jin YH, Clark AB, Slebos RJC, Al-Refai H, Taylor JA, Kunkel TA, Resnick MA, Gordenin DA (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet 34:326–329

    CAS  Google Scholar 

  • Jin CW, Mao QQ, Luo BF, Lin XY, Du ST (2013) Mutation of mpk6 enhances cadmium tolerance in Arabidopsis plants by alleviating oxidative stress. Plant and Soil 371:387–396

    CAS  Google Scholar 

  • Joubert AVP, Lucas L, Garrido F, Joulian C, Jauzein M (2007) Effect of temperature, gas phase composition, pH and microbial activity on As, Zn, Pb and Cd mobility in selected soils in the Ebro and Meuse Basins in the context of global change. Environ Pollut 148:749–758

    CAS  Google Scholar 

  • Kabata-Pendias A (1993) Behavioural properties of trace metals in soils. Appl Geochem 8, Supplement 2:3–9

    Google Scholar 

  • Kabata-Pendias A, Sadurski W (2004) Trace elements and compounds in soil. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, 2nd edn. Wiley-VCH, Weinheim, pp 79–99

    Google Scholar 

  • Karagiannidis N, Nikolaou N (2000) Influence of arbuscular mycorrhizae on heavy metal (Pb and Cd) uptake, growth, and chemical composition of Vitis vinifera L. (cv. Razaki). Am J Enolog Viticult 51:269–275

    CAS  Google Scholar 

  • Keunen K, Remans T, Opdenakker K, Jozefczak M, Gielen H, Guisez Y, Vangronsveld J, Cuypers A (2013) A mutant of the Arabidopsis thaliana LIPOXYGENASE1 gene shows altered signalling and oxidative stress related responses after cadmium exposure. Plant Physiol Biochem 63:272–280

    CAS  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    CAS  Google Scholar 

  • Khoudi H, Maatar Y, Gouiaa S, Masmoudi K (2012) Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. J Plant Physiol 169:98–103

    CAS  Google Scholar 

  • Kabata-Pendias (2011) Trace elements in soils and plants. 4th edition, pp 1–505

    Google Scholar 

  • Kopittke PM, Blamey FPC, Menzies NW (2010) Toxicity of Cd to signal grass (Brachiaria decumbens Stapf.) and Rhodes grass (Chloris gayana Kunth.). Plant and Soil 330:515–523

    CAS  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    CAS  Google Scholar 

  • Koren S, Arčon I, Kump P, Nečemer M, Vogel-Mikuš K (2013) Influence of CdCl2 and CdSO4 supplementation on Cd distribution and ligand environment in leaves of the Cd hyperaccumulator Noccaea (Thlaspi) praecox. Plant and Soil 370:125–148

    CAS  Google Scholar 

  • Körpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res 719:29–34

    Google Scholar 

  • Koutsogiannaki S, Evangelinos N, Koliakos G, Kaloyianni M (2006) Cytotoxic mechanisms of Zn2+ and Cd2+ involve Na+/H+ exchanger (NHE) activation by ROS. Aquat Toxicol 78:315–324

    CAS  Google Scholar 

  • Kovács V, Gondor OK, Szalai G, Darkó E, Majláth I, Janda T, Pál M (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19

    Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161

    CAS  Google Scholar 

  • Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105

    CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    CAS  Google Scholar 

  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Woźny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable—a remobilization can occur. Environ Pollut 158:325–338

    Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138

    CAS  Google Scholar 

  • Kung C-P, Wu Y-R, Chuang H (2014) Expression of a dye-decolorizing peroxidase results in hypersensitive response to cadmium stress through reducing the ROS signal in Arabidopsis. Environ Exp Bot 101:47–55

    CAS  Google Scholar 

  • Kuo S, McNeal BL (1984) Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide. Soil Sci Soc Am J 48:1040–1044

    CAS  Google Scholar 

  • Küpper H, Parameswaran A, Leitenmeier BB, Trtilek M, Setlik I (2007) Cadmium induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Google Scholar 

  • Landrot G, Tappero R, Webb SM, Sparks DL (2012) Arsenic and chromium speciation in an urban contaminated soil. Chemosphere 88:1196–1201

    CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    CAS  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    CAS  Google Scholar 

  • Lefèvre I, Marchal G, Edmond Ghanem M, Correal E, Lutts S (2010) Cadmium has contrasting effects on polyethylene glycol-sensitive and resistant cell lines in the Mediterranean halophyte species Atriplex halimus L. J Plant Physiol 167:365–374

    Google Scholar 

  • Li X, Zhou Q, Wei S, Ren W, Sun X (2011) Adsorption and desorption of carbendazim and cadmium in typical soils in northeastern China as affected by temperature. Geoderma 160:347–354

    CAS  Google Scholar 

  • Li L, Liu X, Peijnenburg WJGM, Zhao J, Chen X, Yu J, Wu H (2012) Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicol Environ Saf 75:1–7

    Google Scholar 

  • Li L, Wu H, van Gestel CA, Peijnenburg WJ, Allen HE (2014) Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environ Pollut 188:144–152

    CAS  Google Scholar 

  • Lima AIG, Da Cruz e Silva E, Figueira EMPA (2012) Cd-induced signaling pathways in plants: possible regulation of PC synthase by protein phosphatase 1. Environ Exp Bot 79:31–36

    CAS  Google Scholar 

  • Lin A-J, Zhang X-H, Chen M-M, Cao Q (2007a) Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci (China) 19:596–602

    CAS  Google Scholar 

  • Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007b) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98

    CAS  Google Scholar 

  • Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235–236:343–351

    Google Scholar 

  • Liptáková Ľ, Huttová J, Mistrík I, Tamás L (2013) Enhanced lipoxygenase activity is involved in the stress response but not in the harmful lipid peroxidation and cell death of short-term cadmium-treated barley root tip. J Plant Physiol 170:646–652

    Google Scholar 

  • Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL, Yang JC, Zhu QS (2003) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52:1467–1473

    CAS  Google Scholar 

  • Liu W, Li PJ, Qi XM, Zhou QX, Zheng L, Sun TH, Yang YS (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158–167

    CAS  Google Scholar 

  • Liu D, Kottke I, Adam D (2007) Localization of cadmium in the root cells of Allium cepa by energy dispersive X-ray analysis. Biologia Plantarum 51:363–366

    CAS  Google Scholar 

  • Liu C, Li F, Luo C, Liu L, Wang S, Liu T, Li X (2009a) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161:1466–1472

    CAS  Google Scholar 

  • Liu Z, He X, Chen W, Yuan F, Yan K, Tao D (2009b) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. J Hazard Mater 169:170–175

    CAS  Google Scholar 

  • Liu N, Lin Z-F, Lin G-Z, Song L-Y, Chen S-W, Mo H, Peng C-L (2010) Lead and cadmium induced alterations of cellular functions in leaves of Alocasia macrorrhiza L. Schott. Ecotoxicol Environ Saf 73:1238–1245

    CAS  Google Scholar 

  • Liu C, Guo J, Cui Y, Lü T, Zhang X, Shi G (2011) Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant and Soil 344:131–141

    CAS  Google Scholar 

  • Liu X, Lou C, Xu L, Sun L (2012) Distribution and bioavailability of cadmium in ornithogenic coral-sand sediments of the Xisha archipelago, South China Sea. Environ Pollut 168:151–160

    CAS  Google Scholar 

  • Liu L, Gong Z, Zhang Y, Li P (2014a) Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology 23:1979–1986

    CAS  Google Scholar 

  • Liu Y, Wu F, Mu Y, Feng C, Fang Y, Chen L, Giesy JP (2014b) Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids. Rev Environ Contam Toxicol 230:35–57

    CAS  Google Scholar 

  • Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem 188:294–300

    CAS  Google Scholar 

  • Llugany M, Miralles R, Corrales I, Barceló J, Poschenrieder C (2012) Cynara cardunculus a potentially useful plant for remediation of soils polluted with cadmium or arsenic. J Geochem Explor 123:122–127

    CAS  Google Scholar 

  • Loeffler S, Hochberger A, Grill E, Winnacker E-L, Zenk MH (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett 258:42–46

    CAS  Google Scholar 

  • Logan TJ, Chaney R (1984) Metals. In: Page AL, Gleason TL, Smith JE, Iskandar IK, Sommers LE (eds) Utilization of municipal wastewater and sludge on land. University of California Press, Riverside, CA, p 235

    Google Scholar 

  • Logan TJ, Miller RH (1983) Background levels of heavy metals in Ohio farm soils. Research circular 275. The Ohio State University Agricultural Research and Development, Wooster, Ohio

    Google Scholar 

  • Lomaglio T, Rocco M, Trupiano D, De Zio E, Grosso A, Marra M, Delfine S, Chiatante D, Morabito D, Scippa GS (2015) Effect of short-term cadmium stress on Populus nigra L. detached leaves. J Plant Physiol 182:40–48

    CAS  Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao F-J, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367

    CAS  Google Scholar 

  • Long LK, Yao Q, Guo J, Yang RH, Huang YH, Zhu HH (2010) Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. Eur J Soil Biol 46:288–294

    Google Scholar 

  • Louwagie G, Gay SH, Burrell A (2009) Addressing soil degradation in EU agriculture: relevant processes, practices and policies. EUR 23767 EN

    Google Scholar 

  • Lozano-Rodriguez E, Hernàndez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues1. J Exp Bot 48:123–128

    CAS  Google Scholar 

  • Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Koller D, Krauss M, Wagner GJ (2004) Critical review of the scienceand options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Adv Agron. Academic, pp 111–180

    Google Scholar 

  • Lushchak VI (2007) Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry 72:809–827

    CAS  Google Scholar 

  • Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol Part C Toxicol Pharmacol 153:175–190

    Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    CAS  Google Scholar 

  • Luxford C, Dean RT, Davies MJ (2002) Induction of DNA damage by oxidised amino acids and proteins. Biogerontology 3:95–102

    CAS  Google Scholar 

  • Lyubenova L, Schröder P (2011) Plants for waste water treatment—effects of heavy metals on the detoxification system of Typha latifolia. Biores Technol 102:996–1004

    CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    CAS  Google Scholar 

  • Mahmood A, Malik RN (2014) Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab J Chem 7:91–99

    CAS  Google Scholar 

  • Maksimović I, Kastori R, Krstić L, Luković J (2007) Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biologia Plantarum 51:589–592

    Google Scholar 

  • Marcano L, Carruyo I, Del Campo A, Montiel X (2002) Effect of cadmium on the nucleoli of meristematic cells of onion Allium cepa L: an ultrastructural study. Environ Res 88:30–35

    CAS  Google Scholar 

  • Marmiroli M, Pigoni V, Savo-Sardaro ML, Marmiroli N (2014) The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environ Exp Bot 99:9–17

    CAS  Google Scholar 

  • Márquez-García B, Horemans N, Cuypers A, Guisez Y, Córdoba F (2011) Antioxidants in Erica andevalensis: a comparative study between wild plants and cadmium-exposed plants under controlled conditions. Plant Physiol Biochem 49:110–115

    Google Scholar 

  • Martínez-Peñalver A, Graña E, Reigosa MJ, Sánchez-Moreiras AM (2012) The early response of Arabidopsis thaliana to cadmium- and copper-induced stress. Environ Exp Bot 78:1–9

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy‐metal resistant and non‐resistant populations of silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol Plant 33(2):161–165

    CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Montagu MV, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    CAS  Google Scholar 

  • McLaughlin MJ, Smolders E, Degryse F, Rietra R (2011) Uptake of metals from soil into vegetables. In: Swartjes FA (ed) Dealing with contaminated sites. Springer, Berlin, pp 325–367

    Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int 16:162–175

    CAS  Google Scholar 

  • Mendoza-Cozatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, Limbo O, Russell MR, Kozlovskyy VI, Martinoia E, Vatamaniuk OK, Russell P, Schroeder JI (2010) Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 285:40416–40426

    CAS  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition. Springer Science & Business Media

    Google Scholar 

  • Mesjasz-Przybyłowics J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybyłowicz W, Głowacka E (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator berkheya coddii. Acta Biol Cracoviensia Ser Bot 46:75–85

    Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    CAS  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H et al (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    CAS  Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, Sanità di Toppi L (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22

    CAS  Google Scholar 

  • Mombo S, Foucault Y, Deola F, Gaillard I, Goix S, Shahid M, Schreck E, Pierart A, Dumat C (2016) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soils Sediments. doi:10.1007/s11368-015-1069-7

    Article  Google Scholar 

  • Monteiro CC, Carvalho RF, Gratão PL, Carvalho G, Tezotto T, Medici LO, Peres LEP, Azevedo RA (2011) Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environ Exp Bot 71:306–320

    CAS  Google Scholar 

  • Monteiro C, Santos C, Pinho S, Oliveira H, Pedrosa T, Dias MC (2012) Cadmium-induced cyto- and genotoxicity are organ-dependent in lettuce. Chem Res Toxicol 25:1423–1434

    CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    CAS  Google Scholar 

  • Morman SA, Plumlee GS (2013) The role of airborne mineral dusts in human disease. Aeolian Res 9:203–212

    Google Scholar 

  • Muehe EM, Obst M, Hitchcock A, Tyliszczak T, Behrens S, Schröder C, Byrne JM, Michel FM, Krämer U, Kappler A (2013) Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant geobacter species. Environ Sci Technol 47:14099–14109

    CAS  Google Scholar 

  • Munshower FF (1977) Cadmium accumulation in plants and animals of polluted and non polluted grasslands. J Environ Qual 6:411–413

    CAS  Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    CAS  Google Scholar 

  • Najmanova J, Neumannova E, Leonhardt T, Zitka O, Kizek R, Macek T, Mackova M, Kotrba P (2012) Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings. Ind Crop Prod 36:536–542

    CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469

    CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol Distribut Funct Ecol Plants 204:316–324

    Google Scholar 

  • Nehnevajova E, Lyubenova L, Herzig R, Schröder P, Schwitzguébel J-P, Schmülling T (2012) Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ Exp Bot 76:39–48

    CAS  Google Scholar 

  • Niazi NK, Bishop TFA, Singh B (2011a) Evaluation of spatial variability of soil arsenic adjacent to a disused cattle-dip site, using model-based geostatistics. Environ Sci Technol 45:10463–10470

    CAS  Google Scholar 

  • Niazi NK, Singh B, Shah P (2011b) Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol 45:7135–7142

    CAS  Google Scholar 

  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG (2011c) Phytoremediation potential of Pityrogramma calomelanos var. austroamericana and Pteris vittata L. grown at a highly variable arsenic contaminated site. Int J Phytoremediation 13:912–932

    CAS  Google Scholar 

  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG (2012) Phytoremediation of an arsenic contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environ Sci Pollut Res 19:3506–3515

    CAS  Google Scholar 

  • Nishizono H, Ichikawa H, Suziki S, Ishii F (1987) The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil 101:15–20

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118:471–482

    CAS  Google Scholar 

  • Nordic Council of Ministers (2003) Cadmium review. www.who.int/ifcs/documents/forums/forum5/nmr_cadmium.pdf

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–48

    CAS  Google Scholar 

  • Nzengue Y, Candéias M, Sauvaigo S, Douki T, Favier A, Rachidi W, Guiraud P (2015) The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: its redox biomarkers. J Trace Elem Med Biol 25:171–180

    Google Scholar 

  • Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T (2011) Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Biosci Biotechnol Biochem 75:1211–1213

    CAS  Google Scholar 

  • OECD (1994) Risk reduction monograph no. 5: cadmium. OECD environment monograph series no. 104. OECD Environment Directorate, Paris

    Google Scholar 

  • Ogawa S, Yoshidomi T, Yoshimura E (2011) Cadmium(II)-stimulated enzyme activation of Arabidopsis thaliana phytochelatin synthase 1. J Inorg Biochem 105:111–117

    CAS  Google Scholar 

  • Olmos E, Martínez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    CAS  Google Scholar 

  • Page AL, Chang AC, El-Amamy M (1987) Cadmium levels in soils and crops in the United States. Lead, mercury, cadmium and arsenic in the environment. 119–146

    Google Scholar 

  • Pal M, Szalai G, Horvath E, Janda T, Paldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szegediensis 46:119–120

    Google Scholar 

  • Panda SK, Patra HK (2007) Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol Plant 29:567–575

    CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    CAS  Google Scholar 

  • Park Y, Moon Y, Ryoo J, Kim N, Cho H, Ahn JH (2012) Identification of the minimal region in lipase ABC transporter recognition domain of Pseudomonas fluorescens for secretion and fluorescence of green fluorescent protein. Microb Cell Fact 11:11–60

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2). US Geol Surv Water Resour Inv Rep 99-4259, 312p

    Google Scholar 

  • Parlak UK, Demirezen Yilmaz D (2013) Ecophysiological tolerance of Lemna gibba L. exposed to cadmium. Ecotoxicol Environ Saf 91:79–85

    Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2007) 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry 68:1139–1146

    CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    CAS  Google Scholar 

  • Pereira BFF, Rozane DE, Araujo SR, Barth G, Queiroz RJB, Nogueira TAR, Moraes MF, Cabral CP, Boaretto AE, Malavolta E (2011) Cadmium availability and accumulation by lettuce and rice. Rev Bras Cienc Solo 35:645–654

    CAS  Google Scholar 

  • Pierce FJ, Dowdy RH, Grigal DF (1982) Concentrations of six trace metals in some major Minnesota soil series. J Environ Qual 11:416–422

    CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zylkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    CAS  Google Scholar 

  • Pizzol M, Bulle C, Thomsen M (2012) Indirect human exposure assessment of airborne lead deposited on soil via a simplified fate and speciation modelling approach. Sci Total Environ 421–422:203–209

    Google Scholar 

  • Podazza G, Arias M, Prado FE (2012) Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. J Hazard Mater 215–216:83–89

    Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    CAS  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    CAS  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579

    CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin Heidelberg, pp 121–147

    Google Scholar 

  • Prasad MNV (2004) Heavy metal stress in plants: from biomolecules to ecosystems. Springer Science & Business Media

    Google Scholar 

  • Prévéral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, Reynaud F, Lobinski R, Verbavatz J-M, Vavasseur A et al (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 284:4936–4943

    Google Scholar 

  • Qi Z-M, Feng S-Y, Helmers MJ (2012) Modeling cadmium transport in neutral and alkaline soil columns at various depths. Pedosphere 22:273–282

    CAS  Google Scholar 

  • Qian H, Li J, Pan X, Jiang H, Sun L, Fu Z (2010) Photoperiod and temperature influence cadmium’s effects on photosynthesis-related gene transcription in Chlorella vulgaris. Ecotoxicol Environ Saf 73:1202–1206

    CAS  Google Scholar 

  • Qiu R-L, Zhao X, Tang Y-T, Yu F-M, Hu P-J (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12

    CAS  Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925

    CAS  Google Scholar 

  • Quenea K, Lamy I, Winterton P, Bermond A, Dumat C (2009) Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 149:217–223

    CAS  Google Scholar 

  • Quezada-hinojosa R, Föllmi KB, Gillet F, Matera V (2015) Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura Mountains EX. Catena 124:85–96

    CAS  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129:232–237

    CAS  Google Scholar 

  • Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ Saf 119:178–185

    CAS  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Perez-Rontome C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    CAS  Google Scholar 

  • Ran X, Liu R, Xu S, Bai F, Xu J, Yang Y, Shi J, Wu Z (2014) Assessment of growth rate, chlorophyll a fluorescence, lipid peroxidation and antioxidant enzyme activity in Aphanizomenon flosaquae, Pediastrum simplex and Synedra acus exposed to cadmium. Ecotoxicology. doi:10.1007/s10646-014-1395-3

    Article  Google Scholar 

  • Rao RAK, Kashifuddin M (2012) Adsorption studies of Cd(II) on ball clay: comparison with other natural clays. Arab J Chem. doi:10.1016/j.arabjc.2012.01.010

    Article  Google Scholar 

  • Rao KS, Mohapatra M, Anand S, Venkateswarlu P (2010) Review on cadmium removal from aqueous solutions. Int J Eng Sci Technol 2:81–103

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    CAS  Google Scholar 

  • Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weeds, worms, and more. papain’s long-lost cousin, phytochelatin synthase. Plant Physiol 136:2463–2474

    CAS  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307

    Google Scholar 

  • Renella G, Adamo P, Bianco MR, Landi L, Violante P, Nannipieri P (2004) Availability and speciation of cadmium added to a calcareous soil under various managements. Eur J Soil Sci 55:123–133

    CAS  Google Scholar 

  • Reuter J, Perdue E (1977) Importance of heavy metal-organic matter interactions in natural waters. Geochim Cosmochim Acta 41:325–334

    CAS  Google Scholar 

  • Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801

    CAS  Google Scholar 

  • Rodrigo A, Avila A, Gómez-Bolea A (1999) Trace metal contents in Parmelia caperata (L.) Ach. compared to bulk deposition, throughfall and leaf-wash fluxes in two holm oak forests in Montseny (NE Spain). Atmos Environ 33:359–367

    Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, Del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    CAS  Google Scholar 

  • Rosén K, Eriksson J, Vinichuk M (2012) Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris). J Environ Radioact 113:16–20

    Google Scholar 

  • Roth U, von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    CAS  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2015) Phytoremediation: mechanisms and adaptations. Soil Remed Plants 4:85–105

    Google Scholar 

  • Saeki K, Kunito T (2012) Influence of chloride ions on cadmium adsorptions by oxides, hydroxides, oxyhydroxides, and phyllosilicates. Appl Clay Sci 62–63:58–62

    Google Scholar 

  • Saidi I, Ayouni M, Dhieb A, Chtourou Y, Chaïbi W, Djebali W (2013) Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr J Bot 85:32–38

    CAS  Google Scholar 

  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171:85–91

    CAS  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, Ottesen RT, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandstr­m H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical Atlas of Europe. Part 1 – Background Information, Methodology and Maps. Geological Survey of Finland, Espoo, Finland

    Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302

    CAS  Google Scholar 

  • Sánchez-Marín P, Santos-Echeandía J, Nieto-Cid M, Álvarez-Salgado XA, Beiras R (2010) Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae. Aquat Toxicol 96:90–102

    Google Scholar 

  • Santos-Echeandía J, Vale C, Caetano M, Pereira P, Prego R (2010) Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal). Mar Environ Res 70(5):358–367

    Google Scholar 

  • Sarret G, Smits EAHP, Michel HC, Isaure MP, Zhao FJ, Tappero R (2013) Chapter one—use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. Adv Agron 119:1–82

    CAS  Google Scholar 

  • Sauvé S, Hendershot W, Allen H (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Google Scholar 

  • Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012a) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427–428:253–262

    Google Scholar 

  • Schreck E, Bonnard R, Laplanche C, Leveque T, Foucault Y, Dumat C (2012b) DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example. J Environ Manage 112:233–239

    CAS  Google Scholar 

  • Schreck E, Laplanche C, Le Guédard M, Bessoule J-J, Austruy A, Xiong T, Foucault Y, Dumat C (2013) Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure. Environ Pollut 179:242–249

    CAS  Google Scholar 

  • Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J, Stefaniak EA, Magnin V, Ranieri V, Dumat C (2014) Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Sci Total Environ 476–477:667–676

    Google Scholar 

  • Schwartz GG, Reis IM (2000) Is cadmium a cause of human pancreatic cancer? Cancer Epidemiol Biomarkers Prev 9:139–145

    CAS  Google Scholar 

  • Scoullos M, Vonkeman GH, Thornton I, Makuch Z (2001) Mercury-cadmium-lead handbook for sustainable heavy metals policy and regulation: handbook for sustainable heavy metals policy and regulation. Springer Science & Business Media, Berlin

    Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    CAS  Google Scholar 

  • Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russian J Plant Physiol 51:525–533

    CAS  Google Scholar 

  • Sergeant K, Kieffer P, Dommes J, Hausman J-F, Renaut J (2014) Proteomic changes in leaves of poplar exposed to both cadmium and low-temperature. Environ Exp Bot 106:112–123

    CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    CAS  Google Scholar 

  • Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C (2012a) Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytoremediation 14:493–505

    CAS  Google Scholar 

  • Shahid M, Dumat C, Aslam M, Pinelli E (2012b) Assessment of lead speciation by organic ligands using speciation models. Chem Spec Bioavail 24:248–252

    CAS  Google Scholar 

  • Shahid M, Dumat C, Silvestre J, Pinelli E (2012c) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils 48:689–697

    CAS  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012d) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12

    Google Scholar 

  • Shahid M, Ferrand E, Schreck E, Dumat C (2013a) Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol 221:107–127

    CAS  Google Scholar 

  • Shahid M, Xiong T, Castrec-Rouelle M, Leveque T, Dumat C (2013b) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459

    CAS  Google Scholar 

  • Shahid M, Xiong T, Masood N, Leveque T, Quenea K, Austruy A, Foucault Y, Dumat C (2014a) Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil: a case study of food-chain contamination. J Soils Sediments 14:655–665

    Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014b) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam 23:389–416

    CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E (2014c) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144:290–297

    CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E (2014d) Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments 14:835–843

    Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Dumat C (2014e) Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. J Geochem Explor. doi:10.1016/j.gexplo.2014.01.008

    Article  Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014f) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015a) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russian J Plant Physiol 62:448–454

    CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015a) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop Prod Glob Environ Issues, Springer International Publishing, pp 1–25

    Google Scholar 

  • Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    CAS  Google Scholar 

  • Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31:969–977

    CAS  Google Scholar 

  • Shi H, Ye H, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 74:99–107

    CAS  Google Scholar 

  • Shi GL, Zhu S, Bai SN, Xia Y, Lou LQ, Cai QS (2015) The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other. J Hazard Mater 299:94–102

    CAS  Google Scholar 

  • Silber A, Bar-Yosef B, Suryano S, Levkovitch I (2012) Zinc adsorption by perlite: effects of pH, ionic strength, temperature, and pre-use as growth substrate. Geoderma 170:159–167

    CAS  Google Scholar 

  • Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511

    CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008a) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    CAS  Google Scholar 

  • Singh S, Khan AN, Nazar R, Anjum NA (2008b) Photosynthetic traits and activities of antioxidant enzymes in blackgram (Vigna mungo L. Hepper) under cadmium stress. Am J Plant Physiol 3:1–25

    Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    CAS  Google Scholar 

  • Son K-H, Kim D-Y, Koo N, Kim K-R, Kim J-G, Owens G (2012) Detoxification through phytochelatin synthesis in Oenothera odorata exposed to Cd solutions. Environ Exp Bot 75:9–15

    CAS  Google Scholar 

  • Souza VL, de Almeida A-AF, Lima SGC, de M Cascardo JC, da C Silva D, Mangabeira PAO, Gomes FP (2011) Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). Biometals 24:59–71

    CAS  Google Scholar 

  • Staelens J, Houle D, Schrijver A, Neirynck J, Verheyen K (2008) Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut 191:149–169

    CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen‐Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63(3):293–298

    CAS  Google Scholar 

  • Stone K, Ksebati MB, Marnett LJ (1990) Investigation of the adducts formed by reaction of malondialdehyde with adenosine. Chem Res Toxicol 3:33–38

    CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    CAS  Google Scholar 

  • Sun J, Shen Z (2007) Effects of Cd stress on photosynthetic characteristics and nutrient uptake of cabbages with different Cd-tolerance. Ying Yong Sheng Tai Xue Bao 18:2605–2610

    CAS  Google Scholar 

  • Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    CAS  Google Scholar 

  • Sun Y, Zhou Q, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161:808–814

    CAS  Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8

    Google Scholar 

  • Tang X, Pang Y, Ji P, Gao P, Hung T (2016) Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicol Environ Saf 125:102–106

    CAS  Google Scholar 

  • Tao S, Sun L, Ma C, Li L, Li G, Hao L (2013) Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium. Plant and Soil 372:309–318

    CAS  Google Scholar 

  • Tauber C (1988) Spurenelemente in Flugaschen (in German). Verlag TUV Rheinland GmbH, Köln, Germany, 469 pp

    Google Scholar 

  • Tavarez M, Macri A, Sankaran RP (2015) Cadmium and zinc partitioning and accumulation during grain filling in two near isogenic lines of durum wheat. Plant Physiol Biochem 97:461–469

    CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    CAS  Google Scholar 

  • Thornton I (1992) Cadmium in the human environment. IARC, Lyon, p 169

    Google Scholar 

  • Tian S, Lu L, Zhang J, Wang K, Brown P, He Z, Liang J, Yang X (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84:63–69

    CAS  Google Scholar 

  • Tipping E, Lofts S, Lawlor AJ (1998) Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Sci Total Environ 210–211:63–77

    Google Scholar 

  • Tiwari S, Kumari B, Singh SN (2008) Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99:1305–1310

    CAS  Google Scholar 

  • Toppi L, Vurro E, De Benedictis M, Falasca G, Zanella L, Musetti R, Lenucci MS, Dalessandro G, Altamura MM (2012) A bifasic response to cadmium stress in carrot: early acclimatory mechanisms give way to root collapse further to prolonged metal exposure. Plant Physiol Biochem 58:269–279

    Google Scholar 

  • Traina SJ (1999) The environmental chemistry of cadmium. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Springer, Netherlands, pp 11–37

    Google Scholar 

  • Tremblay S, Douki T, Cadet J, Wagner JR (1999) 2-Deoxycytidine glycols, a missing link in the free radical-mediated oxidation of DNA. J Biol Chem 274:20833–20838

    CAS  Google Scholar 

  • Tudoreanu L, Phillips CJC (2004) Modeling cadmium uptake and accumulation in plants. Adv Agron 84:121–157

    CAS  Google Scholar 

  • Turrión MB, Lafuente F, Mulas R, López O, Ruipérez C, Pando V (2012) Effects on soil organic matter mineralization and microbiological properties of applying compost to burned and unburned soils. J Environ Manage 95 Suppl: S245–S249

    Google Scholar 

  • Udovic M, McBride MB (2012) Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test. J Hazard Mater 205–206:144–149

    Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A 107:16500–16505

    CAS  Google Scholar 

  • United Nations Environment Programme (UNEP 2010) Final review of scientific information on cadmium. December:1–118

    Google Scholar 

  • Unyayar S, Celik A, Cekiç FO, Gözel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77–81

    CAS  Google Scholar 

  • Urano J, Nakagawa T, Maki Y, Masumura T, Tanaka K, Murata N, Ushimaru T (2000) Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett 466:107–111

    CAS  Google Scholar 

  • USGS (United States Geological Survey) (2015) http://minerals.usgs.gov/minerals/pubs/commodity/cadmium/. Accessed December 2015

  • Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042

    CAS  Google Scholar 

  • Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser M-T (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126

    Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, Fernández LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    CAS  Google Scholar 

  • Van Belleghem F, Cuypers A, Semane B, Smeets K, Vangronsveld J, d’Haen J, Valcke R (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173:495–508

    Google Scholar 

  • Van der Vliet L, Peterson C, Hale B (2007) Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass. J Exp Bot 58:2939–2947

    Google Scholar 

  • Vanhoudt N, Cuypers A, Horemans N et al (2011) Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions. J Environ Radioact 102:638–645

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    CAS  Google Scholar 

  • Vogel-Mikus K, Arcon I, Kodre A (2010) Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant and Soil 331:439–451

    CAS  Google Scholar 

  • Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): part II Microlocalization and cellular effects of cadmium. Environ Exp Bot 58:25–40

    CAS  Google Scholar 

  • Vurro E, Ruotolo R, Ottonello S, Elviri L, Maffini M, Falasca G, Zanella L, Altamura MM, Sanità di Toppi L (2011) Phytochelatins govern zinc/copper homeostasis and cadmium detoxification in Cuscuta campestris parasitizing Daucus carota. Environ Exp Bot 72:26–33

    CAS  Google Scholar 

  • Wang H-C, Wu J-S, Chia J-C, Yang C-C, Wu Y-J, Juang R-H (2009) Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J Agric Food Chem 57:7348–7355

    CAS  Google Scholar 

  • Wang M, Chen L, Chen S, Ma Y (2012) Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol Environ Saf 79:48–54

    CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    CAS  Google Scholar 

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, Skłodowska A, Ruszczyńska A, Bulska E, Antosiewicz DM (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157:2781–2789

    CAS  Google Scholar 

  • Wójcik M, Vangronsveld J, D’Haen J, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens: II. Localization of cadmium in Thlaspi caerulescens. Environ Exp Bot 53:163–171

    Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    CAS  Google Scholar 

  • Wu F-B, Dong J, Qian QQ, Zhang G-P (2005) Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere 60:1437–1446

    CAS  Google Scholar 

  • Wu C, Liao B, Wang S-L, Zhang J, Li J-T (2010) Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis). Int J Phytoremediation 12:574–585

    CAS  Google Scholar 

  • Wu Y, Zhou S, Chen D, Zhao R, Li H, Lin Y (2011) Transformation of metals speciation in a combined landfill leachate treatment. Sci Total Environ 409:1613–1620

    CAS  Google Scholar 

  • Wu Z, Zhao X, Sun X, Tan Q, Tang Y, Nie Z, Hu C (2015) Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere 119:1217–1223

    CAS  Google Scholar 

  • Xian X, Shokohifard GI (1989) Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water Air Soil Pollut 45(3-4):265–273

    CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    CAS  Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J et al (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    CAS  Google Scholar 

  • Xie Y, Luo H, Hu L, Sun X, Lou Y, Fu J (2014) Classification of genetic variation for cadmium tolerance in Bermudagrass [Cynodon dactylon (L.) Pers.] using physiological traits and molecular markers. Ecotoxicology 23:1030–1043

    CAS  Google Scholar 

  • Xin J, Huang B, Yang Z, Yuan J, Zhang Y (2013) Comparison of cadmium subcellular distribution in different organs of two water spinach (Ipomoea aquatica Forsk.) cultivars. Plant and Soil 372:431–444

    CAS  Google Scholar 

  • Xiong J, He Z, Liu D, Mahmood Q, Yang X (2008) The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. Chemosphere 70:489–494

    CAS  Google Scholar 

  • Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43:1593-1600

    Google Scholar 

  • Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014a) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual. doi:10.2134/jeq2013.11.0469

    Article  Google Scholar 

  • Xiong T-T, Leveque T, Austruy A, Goix S, Schreck E, Dappe V, Sobanska S, Foucault Y, Dumat C (2014b) Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health. doi:10.1007/s10653-014-9607-6

    Article  Google Scholar 

  • Xu Q, Min H, Cai S, Fu Y, Sha S, Xie K, Du K (2012) Subcellular distribution and toxicity of cadmium in Potamogeton crispus L. Chemosphere 89:114–120

    CAS  Google Scholar 

  • Xue D, Jiang H, Deng X, Zhang X, Wang H, Xu X, Hu J, Zeng D, Guo L, Qian Q (2014) Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. J Hazard Mater 280:269–278

    CAS  Google Scholar 

  • Yamaguchi N, Mori S, Baba K, Kaburagi-Yada S, Arao T, Kitajima N, Hokura A, Terada Y (2011) Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies. Environ Exp Bot 71:198–206

    CAS  Google Scholar 

  • Yılmaz DD, Parlak KU (2011) Changes in proline accumulation and antioxidative enzyme activities in Groenlandia densa under cadmium stress. Ecol Indicat 11:417–423

    Google Scholar 

  • Yu H, Wang J, Fan W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370(2):302–309

    CAS  Google Scholar 

  • Zangi R, Filella M (2012) Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chem Biol Interact 197:47–57

    CAS  Google Scholar 

  • Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    CAS  Google Scholar 

  • Zeng K, Hwang H, Yuzuri H (2002) Effect of dissolved humic substances on the photochemical degradation rate of 1-Aminopyrene and Atrazine. Int J Mol Sci 3:1048–1057

    CAS  Google Scholar 

  • Zhang Z-C, Chen B-X, Qiu B-S (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ 33:1248–1255

    CAS  Google Scholar 

  • Zhang M, Liu X, Yuan L, Wu K, Duan J, Wang X, Yang L (2012) Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol Biochem 50:79–86

    CAS  Google Scholar 

  • Zhang W-L, Du Y, Zhai M-M, Shang Q (2014) Cadmium exposure and its health effects: a 19-year follow-up study of a polluted area in China. Sci Total Environ 470–471:224–228

    Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    CAS  Google Scholar 

  • Zhao F-J, Ma Y, Zhu Y-G, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

    CAS  Google Scholar 

  • Zhou QX, Song YF (2004) Principles and methods of contaminated soil remediation. Science Press, Beijing, China

    Google Scholar 

  • Zhou H, Zeng M, Zhou X, Liao BH, Peng PQ, Hu M, Zhu W, Wu YJ, Zou ZJ (2015) Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant and Soil 386:317–329

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    CAS  Google Scholar 

  • Zhu Z-J, Sun G-W, Fang X-Z, Qian Q-Q, Yang X-E (2004) Genotypic differences in effects of cadmium exposure on plant growth and contents of cadmium and elements in 14 cultivars of bai cai. J Environ Sci Health B 39:675–687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahid, M., Dumat, C., Khalid, S., Niazi, N.K., Antunes, P.M.C. (2016). Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 241. Reviews of Environmental Contamination and Toxicology, vol 241. Springer, Cham. https://doi.org/10.1007/398_2016_8

Download citation

Publish with us

Policies and ethics