Skip to main content

Impact of Veterinary Pharmaceuticals on the Agricultural Environment: A Re-inspection

  • Chapter
Reviews of Environmental Contamination and Toxicology Volume 243

Abstract

The use of veterinary pharmaceuticals (VPs) is a result of growing animal production. Manure, a great crop fertilizer, contains a significant amount of VPs. The investigation of VPs in manure is prevalent, because of the potential risk for environmental organisms, as well as human health. A re-evaluation of the impact of veterinary pharmaceuticals on the agricultural environment is needed, even though several publications appear every year. The aim of this review was to collate the data from fields investigated for the presence of VPs as an inevitable component of manure. Data on VP concentrations in manure, soils, groundwater and plants were collected from the literature. All of this was connected with biotic and abiotic degradation, leaching and plant uptake. The data showed that the sorption of VPs into soil particles is a process which decreases the negative impact of VPs on the microbial community, the pollution of groundwater, and plant uptake. What was evident was that most of the data came from experiments conducted under conditions different from those in the environment, resulting in an overestimation of data (especially in the case of leaching). The general conclusion is that the application of manure on crop fields leads to a negligible risk for plants, bacteria, and finally humans, but in future every group of compounds needs to be investigated separately, because of the high divergence of properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol Rev 8:251–259. doi:10.1038/nrmicro2312

    Article  CAS  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519. doi:10.1073/pnas.0801925105

    Article  Google Scholar 

  • Anderson CR, Rupp HS, Wu WH (2005) Complexities in tetracycline analysis—chemistry, matrix extraction, cleanup, and liquid chromatography. J Chromatogr A 1075:23–32. doi:10.1016/j.chroma.2005.04.013

    Article  CAS  Google Scholar 

  • Andreu V, Vazquez-Roig P, Blasco C, Picó Y (2009) Determination of tetracycline residues in soil by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 394:1329–1339. doi:10.1007/s00216-009-2635-x

    Article  CAS  Google Scholar 

  • Angenent LT, Mau M, George U, Zahn JA, Raskin L (2008) Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment. Water Res 42:2377–2384. doi:10.1016/j.watres.2008.01.005

    Article  CAS  Google Scholar 

  • Arikan OA, Sikora LJ, Mulbry W, Khan SU, Rice C, Foster GD (2006) The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves. Process Biochem 41:1637–1643. doi:10.1016/j.procbio.2006.03.010

    Article  CAS  Google Scholar 

  • Arikan OA, Sikora LJ, Mulbry W, Khan SU, Foster GD (2007) Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresour Technol 98:169–176. doi:10.1016/j.biortech.2005.10.041

    Article  CAS  Google Scholar 

  • Aryal N, Reinhold DM (2011) Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure. Water Res 45:5545–5552. doi:10.1016/j.watres.2011.08.027

    Article  CAS  Google Scholar 

  • Aust MOO, Godlinski F, Travis GR, Hao X, McAllister TA, Leinweber P, Thiele-Bruhn S (2008) Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ Pollut 156:1243–1251. doi:10.1016/j.envpol.2008.03.011

    Article  CAS  Google Scholar 

  • Babić S, Periša M, Škorić I (2013) Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 91:1635–1642. doi:10.1016/j.chemosphere.2012.12.072

    Article  CAS  Google Scholar 

  • Baran W, Sochacka J, Wardas W (2006) Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65:1295–1299. doi:10.1016/j.chemosphere.2006.04.040

    Article  CAS  Google Scholar 

  • Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—(I) groundwater. Sci Total Environ 402:192–200. doi:10.1016/j.scitotenv.2008.04.028

    Article  CAS  Google Scholar 

  • Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 106:25–36. doi:10.1016/j.jpba.2014.11.040

    Article  CAS  Google Scholar 

  • Bartelt-Hunt S, Snow DD, Damon-Powell T, Miesbach D (2011) Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. J Contam Hydrol 123:94–103. doi:10.1016/j.jconhyd.2010.12.010

    Article  CAS  Google Scholar 

  • Bartha B, Huber C, Harpaintner R, Schröder P (2010) Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. Environ Sci Pollut Res 17:1553–1562. doi:10.1007/s11356-010-0342-y

    Article  CAS  Google Scholar 

  • Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301. doi:10.1016/j.chemosphere.2015.10.137

    Article  CAS  Google Scholar 

  • Batt AL, Snow DD, Aga DS (2006) Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere 64:1963–1971. doi:10.1016/j.chemosphere.2006.01.029

    Article  CAS  Google Scholar 

  • Baynes RE, Dedonder K, Kissell L, Mzyk D, Marmulak T, Smith G, Tell L, Gehring R, Davis J, Riviere JE (2016) Health concerns and management of select veterinary drug residues. Food Chem Toxicol 88:112–122. doi:10.1016/j.fct.2015.12.020

    Article  CAS  Google Scholar 

  • Beausse J (2004) Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. Trends Anal Chem 23:753–761. doi:10.1016/j.trac.2004.08.005

    Article  CAS  Google Scholar 

  • Berg J, Thorsen MK, Holm PE, Jensen J, Nybroe O, Brandt KK (2010) Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay. Environ Sci Technol 44:8724–8728. doi:10.1021/es101798r

    Article  CAS  Google Scholar 

  • Berglund B, Khan GA, Weisner SEB, Ehde PM, Fick J, Lindgren P-E (2014) Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Sci Total Environ 476–477:29–37. doi:10.1016/j.scitotenv.2013.12.128

    Article  CAS  Google Scholar 

  • Białk-Bielińska A, Kumirska J, Palavinskas R, Stepnowski P (2009) Optimization of multiple reaction monitoring mode for the trace analysis of veterinary sulfonamides by LC-MS/MS. Talanta 80:947–953. doi:10.1016/j.talanta.2009.08.023

    Article  CAS  Google Scholar 

  • Białk-Bielińska A, Stolte S, Arning J, Uebers U, Böschen A, Stepnowski P, Matzke M (2011) Ecotoxicity evaluation of selected sulfonamides. Chemosphere 85:928–933. doi:10.1016/j.chemosphere.2011.06.058

    Article  CAS  Google Scholar 

  • Białk-Bielińska A, Maszkowska J, Mrozik W, Bielawska A, Kołodziejska M, Palavinskas R, Stepnowski P, Kumirska J (2012) Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils. Chemosphere 86:1059–1065. doi:10.1016/j.chemosphere.2011.11.058

    Article  CAS  Google Scholar 

  • Białk-Bielińska A, Maszkowska J, Puckowski A, Stepnowski P (2014) Exposure and hazard identification of sulphonamides in the terrestrial environment. In: Environmental risk assessment in soil contamination ISBN 978-953-51-1235-8 InTech. Rijeka Croatia

    Google Scholar 

  • Białk-Bielińska A, Kumirska J, Borecka M, Caban M, Paszkiewicz M, Pazdro K, Stepnowski P (2016) Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm Biomed Anal. doi:10.1016/j.jpba.2016.01.016

    Article  Google Scholar 

  • Binh CTT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37. doi:10.1111/j.1574-6941.2008.00526.x

    Article  CAS  Google Scholar 

  • Bissett A, Burke C, Cook PLM, Bowman JP (2007) Bacterial community shifts in organically perturbed sediments. Environ Microbiol 9:46–60. doi:10.1111/j.1462-2920.2006.01110.x

    Article  CAS  Google Scholar 

  • Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299. doi:10.1016/j.chemosphere.2006.09.095

    Article  CAS  Google Scholar 

  • Blackwell PA, Kay P, Ashauer R, Boxall ABA (2009) Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils. Chemosphere 75:13–19. doi:10.1016/j.chemosphere.2008.11.070

    Article  CAS  Google Scholar 

  • Boleas S, Alonso C, Pro J, Fernández C, Carbonell G, Tarazona JV (2005) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS·3) and influence of manure co-addition. J Hazard Mater 122:233–241. doi:10.1016/j.jhazmat.2005.03.003

    Article  CAS  Google Scholar 

  • Boonsaner M, Hawker DW (2010) Accumulation of oxytetracycline and norfloxacin from saline soil by soybeans. Sci Total Environ 408:1731–1737. doi:10.1016/j.scitotenv.2009.12.032

    Article  CAS  Google Scholar 

  • Boonsaner M, Hawker DW (2012) Investigation of the mechanism of uptake and accumulation of zwitterionic tetracyclines by rice (Oryza sativa L.). Ecotoxicol Environ Saf 78:142–147. doi:10.1016/j.ecoenv.2011.11.023

    Article  CAS  Google Scholar 

  • Borgman O, Chefetz B (2013) Combined effects of biosolids application and irrigation with reclaimed wastewater on transport of pharmaceutical compounds in arable soils. Water Res 47:3431–3443. doi:10.1016/j.watres.2013.03.045

    Article  CAS  Google Scholar 

  • Botsoglou NA, Fletouirs DJ (2001) Drug residues in food. Pharmacology, food safety and analysis. Marcel Dekker, Inc., New York

    Google Scholar 

  • Boxall ABA, Kolpin DW, Halling-Sorensen B, Tolls J (2003) Are veterinary medicines causing environmental risk? Environ Sci Technol 37:286A–294A. doi:10.1021/es032519b

    Article  CAS  Google Scholar 

  • Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91. doi:10.1007/0-387-21729-0_1

    Article  CAS  Google Scholar 

  • Boxall ABA, Fogg L, Baird D, Telfer T, Lewis C, Gravell A, Boucard T (2006a) Targeted monitoring study for veterinary medicines in the environment. Environment Agency, Bristol

    Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006b) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297. doi:10.1021/jf053041t

    Article  CAS  Google Scholar 

  • Boxall, ABA, Tiede, K, Bevan, R, Tam, C, Levy, S, (2006) Desk-based study of current knowledge on veterinary medicines in drinking water and estimation of potential levels. The Food and Environment Research Agency, Sand Hutton

    Google Scholar 

  • Brambilla G, Testa C (2014) Food safety/food security aspects related to the environmental release of pharmaceuticals. Chemosphere 115:81–87. doi:10.1016/j.chemosphere.2014.01.024

    Article  CAS  Google Scholar 

  • Brandt KK, Sjøholm OR, Krogh KA, Halling-Sørensen B, Nybroe O (2009) Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ Sci Technol 43:2963–2968. doi:10.1021/es803546y

    Article  CAS  Google Scholar 

  • Buchberger W (2011) Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J Chromatogr A 1218:603–618. doi:10.1016/j.chroma.2010.10.081

    Article  CAS  Google Scholar 

  • Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological “hot spots” in soils. Soil Biol Biochem 33:729–738. doi:10.1016/S0038-0717(00)00218-2

    Article  CAS  Google Scholar 

  • Byrne-Bailey KG, Gaze WH, Kay P, Boxall ABA, Hawkey PM, Wellington EMH (2009) Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrob Agents Chemother 53:696–702. doi:10.1128/AAC.00652-07

    Article  CAS  Google Scholar 

  • Calderón-Preciado D, Jimenez-Cartagena C, Matamoros V, Bayona JM (2011) Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res 45:221–231. doi:10.1016/j.watres.2010.07.050

    Article  CAS  Google Scholar 

  • Calderón-Preciado D, Renault Q, Matamoros V, Cañameras N, Bayona JM (2012) Uptake of organic emergent contaminants in spath and lettuce: an in vitro experiment. J Agric Food Chem 60:2000–2007. doi:10.1021/jf2046224

    Article  CAS  Google Scholar 

  • Campagnolo ER, Johnson KR, Karpati A, Rubin CS, Kolpin DW, Meyer MT, Esteban JE, Currier RW, Smith K, Thu KM, McGeehin M (2002) Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci Total Environ 299:89–95. doi:10.1016/S0048-9697(02)00233-4

    Article  CAS  Google Scholar 

  • Campo J (2015) Advanced mass spectrometry for food safety and quality—emerging contaminants, comprehensive analytical chemistry. Elsevier, Amsterdam. doi:10.1016/B978-0-444-63340-8.00010-8

    Book  Google Scholar 

  • Carbonell G, Pro J, Gomez N, Babin MM, Fernandez C, Alonso E, Tarazona JV (2009) Sewage sludge applied to agricultural soil: ecotoxicological effects on representative soil organisms. Ecotoxicol Environ Saf 72:1309–1319. doi:10.1016/j.ecoenv.2009.01.007

    Article  CAS  Google Scholar 

  • Carlson JC, Mabury SA (2006) Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada. Environ Toxicol Chem 25:1–10. doi:10.1897/04-657R.1

    Article  CAS  Google Scholar 

  • Carter LJ, Harris E, Williams M, Ryan JJ, Kookana RS, Boxall ABA (2014) Fate and uptake of pharmaceuticals in soil—plant systems. J Agric Food Chem 62:816–825. doi:10.1021/jf404282y

    Article  CAS  Google Scholar 

  • Carter LJ, Williams M, Böttcher C, Kookana RS (2015) Uptake of pharmaceuticals influences plant development and affects nutrient and hormone homeostases. Environ Sci Technol 49:12509–12518. doi:10.1021/acs.est.5b03468

    Article  CAS  Google Scholar 

  • Carvalho PN, Basto MCP, Almeida CMR, Brix H (2014) A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res 21(20):11729–11763. doi:10.1007/s11356-014-2550-3

    Article  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108. doi:10.2134/jeq2008.0128

    Article  CAS  Google Scholar 

  • Chen Y, Hong L, Zongping W, Huijie L, Tao T, Zuo Y (2012) Photodegradation of selected β-blockers in aqueous fulvic acid solutions: kinetics, mechanism and product analysis. Water Res 46:2965–2872. doi:10.1016/j.watres.2012.03.025

    Article  CAS  Google Scholar 

  • Chen Y, Liang Q, Zhou D, Wang Z, Tao T, Zuo Y (2013) Photodegradation kinetics, products and mechanism of timolol under simulated sunlight. J Hazardous Mater 252–253:220–226. doi:10.1016/j.jhazmat.2013.02.035

    Article  CAS  Google Scholar 

  • Chen C, Li J, Chen P, Ding R, Zhang P, Li X (2014) Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ Pollut 193:94–101. doi:10.1016/j.envpol.2014.06.005

    Article  CAS  Google Scholar 

  • Chen J, Xu H, Sun Y, Huang L, Zhang P, Zou C, Yu B, Zhu G, Zhao C (2016) Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Sci Total Environ 543:197–205. doi:10.1016/j.scitotenv.2015.11.015

    Article  CAS  Google Scholar 

  • Chenxi W, Spongberg AL, Witter JD (2008) Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere 73:511–518. doi:10.1016/j.chemosphere.2008.06.026

    Article  CAS  Google Scholar 

  • Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44. doi:10.1002/aheh.200390014

    Article  CAS  Google Scholar 

  • Chuang YH, Zhang Y, Zhang W, Boyd SA, Li H (2015) Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. J Chromatogr A 1404:1–9. doi:10.1016/j.chroma.2015.05.022

    Article  CAS  Google Scholar 

  • Clarke RM, Cummins E (2015) Evaluation of “classic” and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Hum Ecol Risk Assess 21:492–513. doi:10.1080/10807039.2014.930295

    Article  CAS  Google Scholar 

  • Clervil E, Usman M, Emmanuel E, Chatain V, Hanna K (2013) Sorption of nalidixic acid onto sediments under batch and dynamic flow conditions. Chem Geol 335:63–74. doi:10.1016/j.chemgeo.2012.10.041

    Article  CAS  Google Scholar 

  • Colinas C, Ingham E, Molina R (1994) Population responses of target and non-target forest soil organisms to selected biocides. Soil Biol Biochem 26:41–47. doi:10.1016/0038-0717(94)90193-7

    Article  CAS  Google Scholar 

  • Conkle JL, Lattao C, White JR, Cook RL (2010) Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere 80:1353–1359. doi:10.1016/j.chemosphere.2010.06.012

    Article  CAS  Google Scholar 

  • Cortés JM, Larsson E, Jönsson JÅ (2013) Study of the uptake of non-steroid anti-inflammatory drugs in wheat and soybean after application of sewage sludge as a fertilizer. Sci Total Environ 449:385–389. doi:10.1016/j.scitotenv.2013.01.061

    Article  CAS  Google Scholar 

  • Cundliffe E. (1989) How antibiotic-producing organisms avoid suicide. Annual Review of Microbiology 43: 207-233. doi: 10.1146/annurev.mi.43.100189.001231

    Article  CAS  Google Scholar 

  • Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. doi:10.1007/s10311-013-0404-8

    Article  CAS  Google Scholar 

  • Davis JG, Truman CC, Kim SC, Ascough JC, Carlson K (2006) Antibiotic transport via runoff and soil loss. J Environ Qual 35:2250–2260. doi:10.2134/jeq2005.0348

    Article  CAS  Google Scholar 

  • Delay M, Lager T, Schulz HD, Frimmel FH (2007) Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Manag 27:248–255. doi:10.1016/j.wasman.2006.01.013

    Article  CAS  Google Scholar 

  • Demoling LA, Bååth E (2008) No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil. Environ Sci Technol 42:6917–6921. doi:10.1021/es8004706

    Article  CAS  Google Scholar 

  • Demoling LA, Bååth E, Greve G, Wouterse M, Schmitt H (2009) Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol Biochem 41:840–848. doi:10.1016/j.soilbio.2009.02.001

    Article  CAS  Google Scholar 

  • Devillers J (2009) Ecotoxicology modeling. Springer, Berlin. doi:10.1007/978-1-4419-0197-2

    Book  Google Scholar 

  • Dghrir A, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. doi:10.1007/s10311-013-0404-8

    Article  CAS  Google Scholar 

  • Di Guardo A, Finizio A (2016) A moni-modelling approach to manage groundwater risk to pesticide leaching at regional scale. Sci Total Environ 545–546:200–209. doi:10.1016/j.scitotenv.2015.12.056

    Article  CAS  Google Scholar 

  • Díaz-Cruz M (2007) Recent advances in LC-MS residue analysis of veterinary medicines in the terrestrial environment. Trends Anal Chem 26:637–646. doi:10.1016/j.trac.2007.04.004

    Article  CAS  Google Scholar 

  • Diaz-Cruz MS, Garca-Galan MJ, Barceló D (2008) Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry. J Chromatogr A 1193:50–59. doi:10.1016/j.chroma.2008.03.029

    Article  CAS  Google Scholar 

  • Dı́az-Cruz MS, López de Alda MJ, Barceló D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal Chem 22:340–351. doi:10.1016/S0165-9936(03)00603-4

    Article  CAS  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643. doi:10.1093/ps/84.4.634

    Article  CAS  Google Scholar 

  • Ding C, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941. doi:10.1007/s00253-010-2649-5

    Article  CAS  Google Scholar 

  • Ding Y, Zhang W, Gu C, Xagoraraki I, Li H (2011) Determination of pharmaceuticals in biosolids using accelerated solvent extraction and liquid chromatography/tandem mass spectrometry. J Chromatogr A 1218:10–16. doi:10.1016/j.chroma.2010.10.112

    Article  CAS  Google Scholar 

  • Dodgen LK, Li J, Wu X, Lu Z, Gan JJ (2014) Transformation and removal pathways of four common PPCP/EDCs in soil. Environ Pollut 193:29–36. doi:10.1016/j.envpol.2014.06.002

    Article  CAS  Google Scholar 

  • Dodgen LK, Ueda A, Wu X, Parker DR, Gan J (2015) Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ Pollut 198:144–153. doi:10.1016/j.envpol.2015.01.002

    Article  CAS  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253. doi:10.2134/jeq2007.0399

    Article  CAS  Google Scholar 

  • Dorival-García N, Labajo-Recio C, Zafra-Gómez A, Juárez-Jiménez B, Vílchez JL (2015) Improved sample treatment for the determination of 17 strong sorbed quinolone antibiotics from compost by ultra high performance liquid chromatography tandem mass spectrometry. Talanta 138:247–257. doi:10.1016/j.talanta.2015.03.011

    Article  CAS  Google Scholar 

  • Dzierżawski A (2012) Potrzeba racjonalnego stosowania antybiotyków w praktyce weterynaryjnej. Życie Weter 87:316–321

    Google Scholar 

  • Eggen T, Asp TN, Grave K, Hormazabal V (2011) Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 85:26–33. doi:10.1016/j.chemosphere.2011.06.041

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (2010) A guide to understanding biosolids issues. Santa Rosa, CA

    Google Scholar 

  • Environmental Risk Assessment for Veterinary Medicinal Products Other than GMO-containing and Immunological Products. EMEA/CVMP/055/96-final, London

    Google Scholar 

  • Estévez E, Cabrera MC, Molina-Díaz A, Robles-Molina J, Palacios-Díaz Mdel P (2012) Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain). Sci Total Environ 433:538–546. doi:10.1016/j.scitotenv.2012.06.031

    Article  CAS  Google Scholar 

  • European Commission (2002) Disposal and recycling routes for sewage sludge, economic analysis. Luxembourg

    Google Scholar 

  • European Commission (2004) Draft discussion document for the ad hoc meeting on biowaste and sludges. Geneva

    Google Scholar 

  • European Medicines Agency (2004) Environmental impact assessment for veterinary medicinal products. Phase II guidance. London

    Google Scholar 

  • European Medicines Agency (2008) Reflection paper on the implementation of directive 2001/82/EC, as amended, in respect to the assessment of environmental risks of veterinary medicinal products 1–15. London

    Google Scholar 

  • European Medicines Agency (2009) Revised guidiline on environmental impact assessment for veterinary medicinal products, report EMEA/CVMP/ERA/418282/2005 Rev. 1 Corr. London

    Google Scholar 

  • Fahrenfeld N, Knowlton K, Krometis LA, Hession WC, Xia K, Lipscomb E, Libuit K, Green BL, Pruden A (2014) Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: Field-scale mass balance approach. Environ Sci Technol 48:2643–2650. doi:10.1021/es404988k

    Article  CAS  Google Scholar 

  • Fang H, Han Y, Yin Y, Pan X, Yu Y (2014) Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil. Chemosphere 96:51–56. doi:10.1016/j.chemosphere.2013.07.016

    Article  CAS  Google Scholar 

  • Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563. doi:10.1016/j.scitotenv.2010.03.036

    Article  CAS  Google Scholar 

  • Fernandes JP, Almeida CMR, Pereira AC, Ribeiro IL, Reis I, Carvalho P, Basto MCP, Mucha AP (2015) Bioresource technology microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms. Bioresour Technol 182:26–33. doi:10.1016/j.biortech.2015.01.096

    Article  CAS  Google Scholar 

  • Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111. doi:10.1126/science.1220761

    Article  CAS  Google Scholar 

  • Fritz J, Zuo Y (2007) Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem 105:1297–1301. doi:10.1016/j.foodchem.2007.03.047

    Article  CAS  Google Scholar 

  • Furtula V, Stephenson GL, Olaveson KM, Chambers PA (2012) Effects of the veterinary pharmaceutical salinomycin and its formulation on the plant Brassica rapa. Arch Environ Contam Toxicol 63:513–522. doi:10.1007/s00244-012-9807-y

    Article  CAS  Google Scholar 

  • García-Galán MJ, Díaz-Cruz MS, Barceló D (2008) Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trends Anal Chem 27:1008–1022. doi:10.1016/j.trac.2008.10.001

    Article  CAS  Google Scholar 

  • García-Galán MJ, Díaz-Cruz MS, Barceló D (2009) Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. Trends Anal Chem 28:804–819. doi:10.1016/j.trac.2009.04.006

    Article  CAS  Google Scholar 

  • García-Galán MJ, Garrido T, Fraile J, Ginebreda A, Díaz-Cruz MS, Barceló D (2010) Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain). J Hydrol 383:93–101. doi:10.1016/j.jhydrol.2009.06.042

    Article  CAS  Google Scholar 

  • García-Santiago X, Franco-Uría A, Omil F, Lema JM (2016) Risk assessment of persistent pharmaceuticals in biosolids: dealing with uncertainty. J Hazard Mater 302:72–81. doi:10.1016/j.jhazmat.2015.09.035

    Article  CAS  Google Scholar 

  • Gerke HH (2006) Preferential flow descriptions for structured soils. J Plant Nutr Soil Sci 169:382–400. doi:10.1002/jpln.200521955

    Article  CAS  Google Scholar 

  • Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J 1:191–203. doi:10.1038/ismej.2007.31

    Article  CAS  Google Scholar 

  • Gillings MR, Stokes HW (2012) Are humans increasing bacterial evolvability? Trends Ecol Evol 27:346–352. doi:10.1016/j.tree.2012.02.006

    Article  Google Scholar 

  • Girardi C, Greve J, Lamshöft M, Fetzer I, Miltner A, Schäffer A, Kästner M (2011) Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J Hazard Mater 198:22–30. doi:10.1016/j.jhazmat.2011.10.004

    Article  CAS  Google Scholar 

  • Glasener KM (2002) Why is soil important? Soil Sci Soc Am Sci. https://soils.org/files/science-policy/sssa-marketing-2013.pdf

  • Golet, E.M., Strehler, A., Alder A.C., Giger, W., (2002) Determination of Fluoroquinolone Antibacterial Agents in Sewage Sludge and Sludge-Treated Soil Using Accelerated Solvent Extraction Followed by Solid-Phase Extraction, Anal. Chem. 74, 5455–5462, 10.1021/ac025762m

    Article  CAS  Google Scholar 

  • Götz A, Smalla K (1997) Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl Environ Microbiol 63:1980–1986 PMCID: PMC1389163

    Google Scholar 

  • Grassi M, Rizzo L, Farina A (2013) Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ Sci Pollut Res 20:3616–3628. doi:10.1007/s11356-013-1636-7

    Article  CAS  Google Scholar 

  • Grathwohl P, Susset B (2009) Comparison of percolation to batch and sequential leaching tests: theory and data. Waste Manag 29:2681–2688. doi:10.1016/j.wasman.2009.05.016

    Article  CAS  Google Scholar 

  • Grathwohl P, van der Sloot HA (2007) Groundwater risk assessment at contaminated sites (GRACOS): test methods and modeling approaches. In: Quevauviller P (ed) Groundwater science and policy. RSC, Cambridge

    Google Scholar 

  • Grave K, Torren-Edo J, Muller A, Greko C, Moulin G, Mackay D, Fuchs K, Laurier L, Iliev D, Pokludová L, Genakritis M, Jacobsen E, Kurvits K, Kivilahti-Mäntylä K, Wallmann J, Kovács J, Lenharðsson JM, Beechinor JG, Perrella A, Mičule G, Zymantaite U, Meijering A, Prokopiak D, Ponte MH, Svetlin A, Hederová J, Madero CM, Girma K, Eckford S (2014) Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J Antimicrob Chemother. dku106. doi: 10.1093/jac/dku106

    Article  CAS  Google Scholar 

  • Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatogr A 952:111–120. doi:10.1016/S0021-9673(02)00083-3

    Article  CAS  Google Scholar 

  • Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40:451–460. doi:10.1007/s002440010197

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Lykkeberg A, Ingerslev F, Blackwell P, Tjørnelund J (2003a) Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS. Chemosphere 50:1331–1342. doi:10.1016/S0045-6535(02)00766-X

    Article  Google Scholar 

  • Halling-Sørensen B, Sengeløv G, Ingerslev F, Jensen LB (2003b) Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch Environ Contam Toxicol 44:7–16. doi:10.1007/s00244-002-1234-z

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Jacobsen A-M, Jensen J, Sengeløv G, Vaclavik E, Ingerslev F (2005) Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: a field-scale study in southern Denmark. Environ Toxicol Chem 24:802–810. doi:10.1897/03-576.1

    Article  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591. doi:10.1016/j.soilbio.2008.01.010

    Article  CAS  Google Scholar 

  • Hammesfahr U, Kotzerke A, Lamshöft M, Wilke B-M, Kandeler E, Thiele-Bruhn S (2011) Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. Eur J Soil Biol 47:61–68. doi:10.1016/j.ejsobi.2010.10.004

    Article  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518. doi:10.1021/ac015588m

    Article  CAS  Google Scholar 

  • Hawker DW, Cropp R, Boonsaner M (2013) Uptake of zwitterionic antibiotics by rice (Oryza sativa L.) in contaminated soil. J Hazard Mater 263:458–466. doi:10.1016/j.jhazmat.2013.09.066

    Article  CAS  Google Scholar 

  • He X, Wang Z, Nie X, Yang Y, Pan D, Leung AOW, Cheng Z, Yang Y, Li K, Chen K (2012) Residues of fluoroquinolones in marine aquaculture environment of the Pearl River Delta, South China. Environ Geochem Health 34:323–335. doi:10.1007/s10653-011-9420-4

    Article  CAS  Google Scholar 

  • Herklotz PA, Gurung P, Vanden Heuvel B, Kinney CA (2010) Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 78:1416–1421. doi:10.1016/j.chemosphere.2009.12.048

    Article  CAS  Google Scholar 

  • Heuer H, Smalla K (2012) Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev 36:1083–1104. doi:10.1111/j.1574-6976.2012.00337.x

    Article  CAS  Google Scholar 

  • Heuer H, Focks A, Lamshöft M, Smalla K, Matthies M, Spiteller M (2008) Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol Biochem 40:1892–1900. doi:10.1016/j.soilbio.2008.03.014

    Article  CAS  Google Scholar 

  • Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243. doi:10.1016/j.mib.2011.04.009

    Article  CAS  Google Scholar 

  • Hiba A, Carine A, Haifa AR, Ryszard L, Farouk J (2016) Monitoring of twenty-two sulfonamides in edible tissues: investigation of new metabolites and their potential toxicity. Food Chem 192:212–227. doi:10.1016/j.foodchem.2015.06.093

    Article  CAS  Google Scholar 

  • Ho YB, Zakaria MP, Latif PA, Saari N (2012) Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1262:160–168. doi:10.1016/j.chroma.2012.09.024

    Article  CAS  Google Scholar 

  • Ho YB, Zakaria MP, Latif PA, Saari N (2013) Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresour Technol 131:476–484. doi:10.1016/j.biortech.2012.12.194

    Article  CAS  Google Scholar 

  • Hoagland RE (1996) Herbicidal properties of the antibiotic monensin. J Sci Food Agric 70:373–379. doi:10.1002/(SICI)1097-0010(199603)70:3<373::AID-JSFA516>3.0.CO;2-P

    Article  CAS  Google Scholar 

  • Hoagland RE, Zablotowicz RM, Hall JC (2000) Pesticide metabolism in plants and microorganisms: an overview. Pestic Biotransformation Plants Microorg 777:2–27. doi:10.1021/bk-2001-0777.ch001

    Article  CAS  Google Scholar 

  • Holling CS, Bailey JL, Vanden Heuvel B, Kinney CA (2012) Uptake of human pharmaceuticals and personal care products by cabbage (Brassica campestris) from fortified and biosolids-amended soils. J Environ Monit 14:3029. doi:10.1039/c2em30456b

    Article  CAS  Google Scholar 

  • Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices—a review. J Environ Manage 92:2304–2347. doi:10.1016/j.jenvman.2011.05.023

    Article  CAS  Google Scholar 

  • Hong PY, Yannarell AC, Dai Q, Ekizoglu M, Mackie RI (2013) Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl Environ Microbiol 79:2620–2629. doi:10.1128/AEM.03760-12

    Article  CAS  Google Scholar 

  • Horvat AJM, Babić S, Pavlović DM, Ašperger D, Pelko S, Kaštelan-Macan M, Petrović M, Mance AD (2012) Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal. Chem. 31:61–84. doi:10.1016/j.trac.2011.06.023

    Article  CAS  Google Scholar 

  • Hu X, Luo Y, Zhou Q (2010a) Simultaneous analysis of selected typical antibiotics in manure by microwave-assisted extraction and LC–MS n. Chromatographia 71:217–223. doi:10.1365/s10337-009-1438-8

    Article  CAS  Google Scholar 

  • Hu X, Zhou Q, Luo Y (2010b) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158:2992–2998. doi:10.1016/j.envpol.2010.05.023

    Article  CAS  Google Scholar 

  • Hu W, Ma L, Guo C, Sha J, Zhu X (2012) Simultaneous extraction and determination of fluoroquinolones, tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry. Int J Environ Anal Chem 37–41. doi: 10.1080/03067319.2010.520122

    Article  CAS  Google Scholar 

  • Huang X, Liu C, Li K, Liu F, Liao D, Liu L, Zhu G, Liao J (2013) Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environ Sci Pollut Res 20:9066–9074. doi:10.1007/s11356-013-1905-5

    Article  CAS  Google Scholar 

  • Huber C, Bartha B, Schroder P (2012) Metabolism of diclofenac in plants—hydroxylation is followed by glucose conjugation. J Hazard Mater 243:250–256. doi:10.1016/j.jhazmat.2012.10.023

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: function, diversity, resistance. J Soil Sediment 4:11–16. doi:10.1007/BF02990823

    Article  CAS  Google Scholar 

  • Huysman F, Van Renterghem B, Verstraete W (1993) Antibiotic resistant sulphite-reducing clostridia in soil and groundwater as indicator of manuring practices. Water Air Soil Pollut 69:243–255. doi:10.1007/BF00478161

    Article  CAS  Google Scholar 

  • Ingerslev F, Halling-Sørensen B (2001) Biodegradability of metronidazole, olaquindox, and tylosin and formation of tylosin degradation products in aerobic soil—manure slurries. Ecotoxicol Environ Saf 48:311–320. doi:10.1006/eesa.2000.2026

    Article  CAS  Google Scholar 

  • Ingerslev F, Toräng L, Loke ML, Halling-Sorensen B, Nyholm N (2001) Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44:865–872. doi:10.1016/S0045-6535(00)00479-3

    Article  CAS  Google Scholar 

  • Inoue J, Chamberlain K, Bromilow RH (1998) Physicochemical factors affecting the uptake by roots and translocation to shoots of amine bases in Barley. Pestic Sci 54:8–21. doi:10.1002/(SICI)1096-9063(199809)54:1<8::AID-PS793>3.0.CO;2-E

    Article  CAS  Google Scholar 

  • Institute of Medicine (1989) Human health risks with the subtherapeutic use of penicillin or tetracyclines in animal feed. National Academy Press, Washington, DC

    Google Scholar 

  • Jacobsen AM, Halling-Sørensen B, Ingerslev F, Hansen SH (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1038:157–170. doi:10.1016/j.chroma.2004.03.034

    Article  CAS  Google Scholar 

  • Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22:536–545. doi:10.1016/j.tim.2014.05.005

    Article  CAS  Google Scholar 

  • Jia A, Xiao Y, Hu J, Asami M, Kunikane S (2009) Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1216:4655–4662. doi:10.1016/j.chroma.2009.03.073

    Article  CAS  Google Scholar 

  • Jiaa S, Hea X, Bub Y, Shia P, Miaoa Y, Zhoub H, Shanb Z, Zhang XX (2014) Environmental fate of tetracycline resistance genes originating from swine feedlots in river water. J Environ Sci Health B 49:624–631. doi:10.1080/03601234.2014.911594

    Article  CAS  Google Scholar 

  • Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93:267–278. doi:10.1016/S0167-8809(01)00350-4

    Article  Google Scholar 

  • Johnsen PJ, Townsend JP, Bøhn T, Simonsen GS, Sundsfjord A, Nielsen KM (2009) Factors affecting the reversal of antimicrobial-drug resistance. Lancet Infect Dis 9(6):357–364. doi:10.1016/S1473-3099(09)70105-7

    Article  CAS  Google Scholar 

  • Jones-Lepp TL, Sanchez CA, Moy T, Kazemi R (2010) Method development and application to determine potential plant uptake of antibiotics and other drugs in irrigated crop production systems. J Agric Food Chem 58:11568–11573. doi:10.1021/jf1028152

    Article  CAS  Google Scholar 

  • Joy SR, Li X, Snow DD, Gilley JE, Woodbury B, Bartelt-Hunt SL (2014) Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage. Sci Total Environ 481:69–74. doi:10.1016/j.scitotenv.2014.02.027

    Article  CAS  Google Scholar 

  • K’oreje KO, Vergeynst L, Ombaka D, De Wispelaere P, Okoth M (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244. doi:10.1016/j.chemosphere.2016.01.095

    Article  CAS  Google Scholar 

  • Kang DH, Gupta S, Rosen C, Fritz V, Singh A, Chander Y, Murray H, Rohwer C (2013) Antibiotic uptake by vegetable crops from manure-applied soils. J Agric Food Chem 61:9992–10001. doi:10.1021/jf404045m

    Article  CAS  Google Scholar 

  • Karci A, Balcioğlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407:4652–4664. doi:10.1016/j.scitotenv.2009.04.047

    Article  CAS  Google Scholar 

  • Kay P, Blackwell PA, Boxall ABA (2004) Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ Toxicol Chem 23, 1136–1144. doi: 10.1897/03-374

    Article  CAS  Google Scholar 

  • Kay P, Blackwell PA, Boxall ABA (2005a) Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere 60:497–507. doi:10.1016/j.chemosphere.2005.01.028

    Article  CAS  Google Scholar 

  • Kay P, Blackwell PA, Boxall ABA (2005b) A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ Pollut 134:333–341. doi:10.1016/j.envpol.2004.07.021

    Article  CAS  Google Scholar 

  • Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag 32:1186–1195. doi:10.1016/j.wasman.2012.01.012

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13. doi:10.1016/j.ecolind.2007.06.002

    Article  CAS  Google Scholar 

  • Kemper N, Faber H, Skutlarek D, Krieter J (2008) Analysis of antibiotic residues in liquid manure and leachate of dairy farms in Northern Germany. Agric Water Manag 95:1288–1292. doi:10.1016/j.agwat.2008.05.008

    Article  Google Scholar 

  • Kim SC, Yang JE, Ok YS, Carlson K (2010) Dissolved and colloidal fraction transport of antibiotics in soil under biotic and abiotic conditions. Water Qual Res J Canada 45:275–285

    Article  CAS  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587. doi:10.1021/es901221x

    Article  CAS  Google Scholar 

  • Kołodziejska M, Maszkowska J, Białk-Bielińska A, Steudte S, Kumirska J, Stepnowski P, Stolte S (2013) Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. Chemosphere 92:1253–1259. doi:10.1016/j.chemosphere.2013.04.057

    Article  CAS  Google Scholar 

  • Kolz AC, Moorman TB, Ong SK, Scoggin KD, Douglass EA (2005) Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons. Water Environ Res 77:49–56. doi:10.2175/106143005X41618

    Article  CAS  Google Scholar 

  • Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147:187–193. doi:10.1016/j.envpol.2006.08.016

    Article  CAS  Google Scholar 

  • Kools SAE, Moltmann JF, Knacker T (2008) Estimating the use of veterinary medicines in the European union. Regul Toxicol Pharmacol 50:59–65. doi:10.1016/j.yrtph.2007.06.003

    Article  CAS  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315–322. doi:10.1016/j.envpol.2007.08.020

    Article  CAS  Google Scholar 

  • Kuchta SL, Cessna AJ (2009) Lincomycin and spectinomycin concentrations in liquid swine manure and their persistence during simulated manure storage. Arch Environ Contam Toxicol 57:1–10. doi:10.1007/s00244-008-9229-z

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085. doi:10.2134/jeq2005.0026

    Article  CAS  Google Scholar 

  • Kummerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7. doi:10.1093/jac/dkg293

    Article  CAS  Google Scholar 

  • Kurwadkar ST, Adams CD, Meyer MT, Kolpin DW (2007) Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. J Agric Food Chem 55:1370–1376. doi:10.1021/jf060612o

    Article  CAS  Google Scholar 

  • Kurwadkar ST, Adams CD, Meyer MT, Kolpin DW (2011) Comparative mobility of sulfonamides and bromide tracer in three soils. J Environ Manage 92:1874–1881. doi:10.1016/j.jenvman.2011.03.018

    Article  CAS  Google Scholar 

  • Kuster M, José López de Alda M, Barceló D (2004) Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. TrAC Trends Anal. Chem. 23:790–798. doi:10.1016/j.trac.2004.08.007

    Article  CAS  Google Scholar 

  • Küster A, Bachmann J, Brandt U, Ebert I, Hickmann S, Klein-Goedicke J, Maack G, Schmitz S, Thumm E, Rechenberg B (2009) Regulatory demands on data quality for the environmental risk assessment of pharmaceuticals. Regul Toxicol Pharmacol 55:276–280. doi:10.1016/j.yrtph.2009.07.005

    Article  CAS  Google Scholar 

  • Kwon SI, Owens G, Ok YS, Lee DB, Jeon W-T, Kim JG, Kim K-R (2011) Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manag 31:39–44. doi:10.1016/j.wasman.2010.08.018

    Article  CAS  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303. doi:10.1016/j.envpol.2011.12.034

    Article  CAS  Google Scholar 

  • Le-Minh N, Khan SJ, Drewes JE, Stuetz RM (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Res 44:4295–4323. doi:10.1016/j.watres.2010.06.020

    Article  CAS  Google Scholar 

  • Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201. doi:10.1016/j.envpol.2014.01.015

    Article  CAS  Google Scholar 

  • Li YW, Wu XL, Mo CH, Tai YP, Huang XP, Xiang L (2011) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. J Agric Food Chem 59:7268–7276. doi:10.1021/jf1047578

    Article  CAS  Google Scholar 

  • Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil Marco. Chemosphere 68:671–676. doi:10.1016/j.chemosphere.2007.02.009

    Article  CAS  Google Scholar 

  • Lillenberg M, Yurchenko S, Kipper K, Herodes K, Pihl V, Sepp K, Lõhmus R, Nei L (2009) Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. J Chromatogr A 1216:5949–5954. doi:10.1016/j.chroma.2009.06.029

    Article  CAS  Google Scholar 

  • Lillicrap A, Macken A, Thomas KV (2015) Recommendations for the inclusion of targeted testing to improve the regulatory environmental risk assessment of veterinary medicines used in aquaculture. Environ Int 85:1–4. doi:10.1016/j.envint.2015.07.019

    Article  Google Scholar 

  • Lindsey ME, Meyer M, Thurman EM (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73:4640–4646. doi:10.1021/ac010514w

    Article  CAS  Google Scholar 

  • Liu F, Ying GG, Tao R, Zhao JL, Yang JF, Zhao LF (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642. doi:10.1016/j.envpol.2008.12.021

    Article  CAS  Google Scholar 

  • Liu L, Liu YH, Liu CX, Wang Z, Dong J, Zhu GF, Huang X (2013a) Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecol Eng 53:138–143. doi:10.1016/j.ecoleng.2012.12.033

    Article  Google Scholar 

  • Liu D, Lung W-S, Colosi LM (2013b) Effects of sorption kinetics on the fate and transport of pharmaceuticals in estuaries. Chemosphere 92:1001–1009. doi:10.1016/j.chemosphere.2013.03.029

    Article  CAS  Google Scholar 

  • Liu FJ, Li SX, Zheng FY, Huang XG, Zuo YG, Tu TX, Wu XQ (2014) Risk assessment of nitrate and oxytetracycline addition on coastal ecosystem functions. Aquat Toxicol 146:76–81. doi:10.1016/j.aquatox.2013

    Article  Google Scholar 

  • Loke ML, Ingerslev F, Halling-Sørensen B, Tjørnelund J (2000) Stability of Tylosin A in manure containing test systems determined by high performance liquid chromatography. Chemosphere 40:759–765. doi:10.1016/S0045-6535(99)00450-6

    Article  CAS  Google Scholar 

  • Lopez Meza S, Garrabrants AC, Van der Sloot H, Kosson DS (2008) Comparison of the release of constituents from granular materials under batch and column testing. Waste Manag 28:1853–1867. doi:10.1016/j.wasman.2007.11.009

    Article  Google Scholar 

  • López-Serna R, Jurado A, Vázquez-Suñé E, Carrera J, Petrović M, Barceló D (2013) Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona. Spain Environ Pollut 174:305–315. doi:10.1016/j.envpol.2012.11.022

    Article  CAS  Google Scholar 

  • MacHerius A, Eggen T, Lorenz W, Moeder M, Ondruschka J, Reemtsma T (2012) Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment. Environ Sci Technol 46:10797–10804. doi:10.1021/es3028378

    Article  CAS  Google Scholar 

  • Maia AS, Ribeiro AR, Amorim CL, Barreiro JC, Cass QB, Castro PML, Tiritan ME (2014) Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1333:87–98. doi:10.1016/j.chroma.2014.01.069

    Article  CAS  Google Scholar 

  • Marsoni M, De Mattia F, Labra M, Bruno A, Bracale M, Vannini C (2014) Uptake and effects of a mixture of widely used therapeutic drugs in Eruca sativa L. and Zea mays L. plants. Ecotoxicol Environ Saf 108:52–57. doi:10.1016/j.ecoenv.2014.05.029

    Article  CAS  Google Scholar 

  • Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367. doi:10.1126/science.1159483

    Article  CAS  Google Scholar 

  • Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579. doi:10.1016/j.envpol.2006.11.035

    Article  CAS  Google Scholar 

  • Masse DI, Saady NMC, Gilbert Y (2014) Potential of biological processes to eliminate antibiotics in livestock manure: an overview. Animals 4:146–163. doi:10.3390/ani4020146

    Article  Google Scholar 

  • Maszkowska J, Kołodziejska M, Białk-Bielińska A, Mrozik W, Kumirska J, Stepnowski P, Palavinskas R, Krüger O, Kalbe U (2013) Column and batch tests of sulfonamide leaching from different types of soil. J Hazard Mater 260:468–474. doi:10.1016/j.jhazmat.2013.05.053

    Article  CAS  Google Scholar 

  • Maszkowska J, Wagil M, Mioduszewska K, Kumirska J, Stepnowski P, Białk-Bielińska A (2014) Thermodynamic studies for adsorption of ionizable pharmaceuticals onto soil. Chemosphere 111:568–574. doi:10.1016/j.chemosphere.2014.05.005

    Article  CAS  Google Scholar 

  • Matamoros V, Nguyen LX, Arias CA, Salvado V, Brix H (2012) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88:1257–1264. doi:10.1016/j.chemosphere.2012.04.004

    Article  CAS  Google Scholar 

  • Metcalfe CD, Alder AC, Halling-Sørensen B, Krogh K, Fenner K, Larsbo M, Straub JO, Ternes TA, Topp E, Lapen DR, Boxall ABA (2008) Exposure assessment methods for veterinary and human-use medicines in the environment: PEC vs. MEC comparisons. Chapter 11. In: Pharmaceuticals in the environment. Sources, fate, effects and risks. pp 147–171. doi: 10.1007/978-3-540-74664-5_11

  • Michelini L, La Rocca N, Rascio N, Ghisi R (2013) Structural and functional alterations induced by two sulfonamide antibiotics on barley plants. Plant Physiol Biochem 67:55–62. doi:10.1016/j.plaphy.2013.02.027

    Article  CAS  Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244. doi:10.1016/S0045-6535(03)00272-8

    Article  CAS  Google Scholar 

  • Miller EL, Nason SL, Karthikeyan K, Pedersen JA (2015) Root uptake of pharmaceuticals and personal care product ingredients. Environ Sci Technol 50:acs.est.5b01546. doi:10.1021/acs.est.5b01546

    Article  CAS  Google Scholar 

  • Ministry of Agriculture and Rural Development (2013) Antimicrobial veterinary medicinal products in 2012 in Poland. Warsaw, Poland

    Google Scholar 

  • Mitchell SM, Ullman JL, Teel AL, Watts RJ (2014) pH and temperature effects on the hydrolysis of three β-lactam antibiotics: ampicillin, cefalotin and cefoxitin. Sci Total Environ 466–467:547–555. doi:10.1016/j.scitotenv.2013.06.027

    Article  CAS  Google Scholar 

  • Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ (2012) Combination of microwave-assisted micellar extraction with liquid chromatography tandem mass spectrometry for the determination of fluoroquinolone antibiotics in coastal marine sediments and sewage sludges samples. Biomed Chromatogr 26:33–40. doi:10.1002/bmc.1621

    Article  CAS  Google Scholar 

  • Montforts MHMM (1999) Environmental risk assessment for veterinary medicinal products part 1. Non-immunological drug substances. Second update RIVM report 320202001/2003. Bilthoven

    Google Scholar 

  • Moore MT, Kröger R (2010) Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth. Arch Environ Contam Toxicol 59:574–581. doi:10.1007/s00244-010-9519-0

    Article  CAS  Google Scholar 

  • Moral R, Paredes C, Bustamante MA, Marhuenda-Egea F, Bernal MP (2009) Utilisation of manure composts by high-value crops: safety and environmental challenges. Bioresour Technol 100:5454–5460. doi:10.1016/j.biortech.2008.12.007

    Article  CAS  Google Scholar 

  • Motarjemi Y, Moy G, Tood E (2014) Encyclopedia of food safety, vol 3. Elsevier, San Diego

    Google Scholar 

  • Muller AK, Westergaard K, Christensen S, Sorensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58. doi:10.1007/s00248-001-0042-8

    Article  CAS  Google Scholar 

  • Nebot C, Guarddon M, Seco F, Iglesias A, Miranda JM, Franco CM, Cepeda A (2014) Monitoring the presence of residues of tetracyclines in baby food samples by HPLC-MS/MS. Food Control 46:495–501. doi:10.1016/j.foodcont.2014.05.042

    Article  CAS  Google Scholar 

  • Nesme J, Simonet P (2015) The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol 17:913–930. doi:10.1111/1462-2920.12631

    Article  Google Scholar 

  • Nesme J, Cecillon S, Delmont TO, Monier JM, Vogel TM, Simonet P (2014) Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 24:1096–1100. doi:10.1016/j.cub.2014.03.036

    Article  CAS  Google Scholar 

  • O’Connor S, Aga DS (2007) Analysis of tetracycline antibiotics in soil: advances in extraction, clean-up, and quantification. Trends Anal Chem 26:456–465. doi:10.1016/j.trac.2007.02.007

    Article  CAS  Google Scholar 

  • Ollivier J, Kleineidam K, Kotzerke A, Kindler R, Wilke B, Schloter M (2010) Effect of sulfadiazine-contaminated pig manure on the abundances of genes and transcripts involved in nitrogen transformation in the root-rhizosphere complexes of maize and clover. Appl Environ Microbiol 76:7903–7909. doi:10.1128/AEM.01252-10

    Article  CAS  Google Scholar 

  • Oppel J, Broll G, Loffker D, Meller M, Rombke J, Ternes T, Löffler D, Meller M, Römbke J, Ternes T (2004) Leaching behaviour of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. Sci Total Environ 328:265–273. doi:10.1016/j.scitotenv.2004.02.004

    Article  CAS  Google Scholar 

  • Opris O, Copaciu F, Loredana Soran M, Ristoiu D, Niinemets U, Copolovici L (2013) Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Saf 87:70–79. doi:10.1016/j.ecoenv.2012.09.019

    Article  CAS  Google Scholar 

  • Ostermann A, Siemens J, Welp G, Xue Q, Lin X, Liu X, Amelung W (2013) Leaching of veterinary antibiotics in calcareous Chinese croplands. Chemosphere 91:928–934. doi:10.1016/j.chemosphere.2013.01.110

    Article  CAS  Google Scholar 

  • Pan M, Chu LM (2016a) Adsorption and degradation of five selected antibiotics in agricultural soil. Sci Total Environ 545–546:48–56. doi:10.1016/j.scitotenv.2015.12.040

    Article  CAS  Google Scholar 

  • Pan M, Chu LM (2016b) Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol Environ Saf 126:228–237. doi:10.1016/j.ecoenv.2015.12.027

    Article  CAS  Google Scholar 

  • Pan X, Qiang Z, Ben W, Chen M (2011) Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 84:695–700. doi:10.1016/j.chemosphere.2011.03.022

    Article  CAS  Google Scholar 

  • Pan M, Wong CKC, Chu LM (2014) Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, southern China. J Agric Food Chem 62:11062–11069. doi:10.1021/jf503850v

    Article  CAS  Google Scholar 

  • Peng S, Wang Y, Zhou B, Lin X (2015) Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. Sci Total Environ 506–507:279–286. doi:10.1016/j.scitotenv.2014.11.010

    Article  CAS  Google Scholar 

  • Picó Y, Andreu V (2007) Fluoroquinolones in soil-risks and challenges. Anal Bioanal Chem 387:1287–1299. doi:10.1007/s00216-006-0843-1

    Article  CAS  Google Scholar 

  • Pino MR, Val J, Mainar AM, Zuriaga E, Espanol C, Langa E (2015) Acute toxicological effects on the earthworm Eisenia fetida of 18 common pharmaceuticals in artificial soil. Sci Total Environ 518–519:225–237. doi:10.1016/j.scitotenv.2015.02.080

    Article  CAS  Google Scholar 

  • Podlipná R, Skálová L, Seidlová H, Szotáková B, Kubíček V, Stuchlíková L, Jirásko R, Vaněk T, Vokřál I (2013) Biotransformation of benzimidazole anthelmintics in reed (Phragmites australis) as a potential tool for their detoxification in environment. Bioresour Technol 144:216–224. doi:10.1016/j.biortech.2013.06.105

    Article  CAS  Google Scholar 

  • Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67:387–396. doi:10.1016/j.aquatox.2004.02.001

    Article  CAS  Google Scholar 

  • Popova IE, Bair DA, Tate KW, Sanjai P (2014) Sorption, leaching, and surface runoff of beef cattle veterinary pharmaceuticals under simulated irrigated pasture conditions. J Environ Qual 42:1167–1175. doi:10.2134/jeq2013.01.0012

    Article  CAS  Google Scholar 

  • Poskrobko B, Poskrobko T, Skiba K (2007) Zagrożenia i Ochrona Gleb. PWN, Warszawa

    Google Scholar 

  • Prosser RS, Sibley PK (2015) Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environ Int 84:209–212. doi:10.1016/j.envint.2015.07.007

    Article  CAS  Google Scholar 

  • Pruden A, Arabi M, Storteboom HN (2012) Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 46:11541–11549. doi:10.1021/es302657r

    Article  CAS  Google Scholar 

  • Pruneda A (1950) The medical impact of antimicrobial use in food animals. Report of a WHO meeting. Medicina (B. Aires) 30:175–178. doi: 10.5860/CHOICE.41-4081

    Google Scholar 

  • Qiao M, Chen W, Su J, Zhang B, Zhang C (2012) Fate of tetracyclines in swine manure of three selected swine farms in China. J Environ Sci 24:1047–1052. doi:10.1016/S1001-0742(11)60890-5

    Article  CAS  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722. doi:10.1016/S0045-6535(99)00442-7

    Article  Google Scholar 

  • Raich-Montiu J, Beltrán JL, Prat MD, Granados M (2010) Studies on the extraction of sulfonamides from agricultural soils. Anal Bioanal Chem 397:807–814. doi:10.1007/s00216-010-3580-4

    Article  CAS  Google Scholar 

  • Raich-Montiu J, Prat MD, Granados M (2011) Extraction and analysis of avermectines in agricultural soils by microwave assisted extraction and ultra high performance liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta 697:32–37. doi:10.1016/j.aca.2011.04.021

    Article  CAS  Google Scholar 

  • Ramaswamy J, Prasher SO, Patel RM, Hussain SA, Barrington SF (2010a) The effect of composting on the degradation of a veterinary pharmaceutical. Bioresour Technol 101:2294–2299. doi:10.1016/j.biortech.2009.10.089

    Article  CAS  Google Scholar 

  • Ramaswamy J, Prasher SO, Patel RM, Hussain SA, Barrington SF (2010b) The effect of composting on the degradation of a veterinary pharmaceutical. Bioresour Technol 101:2294–2299. doi:10.1016/j.biortech.2009.10.089

    Article  CAS  Google Scholar 

  • Rehman MSU, Rashid N, Ashfaq M, Saif A, Ahmad N, Han J-I (2013) Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138:1045–1055. doi:10.1016/j.chemosphere.2013.02.036

    Article  CAS  Google Scholar 

  • Reichel R, Rosendahl I, Peeters ETHM, Focks A, Groeneweg J, Bierl R, Schlichting A, Amelung W, Thiele-Bruhn S (2013) Effects of slurry from sulfadiazine-(SDZ) and difloxacin-(DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil. Soil Biol Biochem 62:82–91. doi:10.1016/j.soilbio.2013.03.007

    Article  CAS  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289. doi:10.1016/j.febslet.2007.04.013

    Article  CAS  Google Scholar 

  • Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24:423–430. doi:10.1897/04-210R.1

    Article  CAS  Google Scholar 

  • Roccaro P, Vagliasindi FGA (2014) Risk assessment of the use of biosolids containing emerging organic contaminants in agriculture. Chem Eng Trans 37:817–822. doi:10.3303/CET1437137

    Article  Google Scholar 

  • Rodriguez-Ruiz A, Etxebarria J, Boatti L, Marigomez I (2015) Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values. Environ Sci Pollut Res 22:13344–13361. doi:10.1007/s11356-015-4564-x

    Article  CAS  Google Scholar 

  • Sabourin L, Duenk P, Bonte-Gelok S, Payne M, Lapen DR, Topp E (2012) Uptake of pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with municipal biosolids. Sci Total Environ 431:233–236. doi:10.1016/j.scitotenv.2012.05.017

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. doi:10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  • Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:7452–7459. doi:10.1021/es0480217

    Article  CAS  Google Scholar 

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke BM, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456. doi:10.1111/j.1462-2920.2008.01783.x

    Article  CAS  Google Scholar 

  • Schlabach M, Grung M, Heimstad ES, Moe M, Schlabach M, Svenson A, Thomas K, Woldegiorgis A (2007) Human and veterinary pharmaceuticals, narcotics, and personal care products in the environment. Current state of knowledge and monitoring requirements. Oslo

    Google Scholar 

  • Schlusener MP, Bester K (2006) Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ Pollut 143:565–571. doi:10.1016/j.envpol.2005.10.049

    Article  CAS  Google Scholar 

  • Schmitt H, Haapakangas H, Van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37:1882–1892. doi:10.1016/j.soilbio.2005.02.022

    Article  CAS  Google Scholar 

  • Sengeløv G, Agersø Y, Halling-Sørensen B, Baloda SB, Andersen JS, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595. doi:10.1016/S0160-4120(02)00084-3

    Article  Google Scholar 

  • Shelver WL, Hakk H, Larsen GL, DeSutter TM, Casey FXM (2010) Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities. J Chromatogr A 1217:1273–1282. doi:10.1016/j.chroma.2009.12.034

    Article  CAS  Google Scholar 

  • Shenker M, Harush D, Ben-Ari J, Chefetz B (2011) Uptake of carbamazepine by cucumber plants—a case study related to irrigation with reclaimed wastewater. Chemosphere 82:905–910. doi:10.1016/j.chemosphere.2010.10.052

    Article  CAS  Google Scholar 

  • Sittig S, Kasteel R, Groeneweg J, Hofmann D, Thiele B, Koppchen S, Vereecken H (2014) Dynamics of transformation of the veterinary antibiotic sulfadiazine in two soils. Chemosphere 95:470–477. doi:10.1016/j.chemosphere.2013.09.100

    Article  CAS  Google Scholar 

  • Smalla K, Heuer H, Gotz A, Niemeyer D, Krogerrecklenfort E, Tietze E (2000) Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl Environ Microbiol 66:4854–4862. doi:10.1128/AEM.66.11.4854-4862.2000

    Article  CAS  Google Scholar 

  • Solliec M, Roy-Lachapelle A, Gasser M-O, Coté C, Généreux M, Sauvé S (2016) Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Sci Total Environ 543:524–535. doi:10.1016/j.scitotenv.2015.11.061

    Article  CAS  Google Scholar 

  • Song W, Guo M (2014) Applied manure and nutrient chemistry for sustainable agriculture and environment. In: He Z, Zhang H (eds) Applied manure and nutrient chemistry for sustainable agriculture and environment. pp 1–379. doi: 10.1007/978-94-017-8807-6

    Google Scholar 

  • Speltini A, Sturini M, Maraschi F, Viti S, Sbarbada D, Profumo A (2015) Fluoroquinolone residues in compost by green enhanced microwave-assisted extraction followed by ultra performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1410:44–50. doi:10.1016/j.chroma.2015.07.093

    Article  CAS  Google Scholar 

  • Spielmeyer A, Breier B, Groißmeier K, Hamscher G (2015) Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation. Bioresour Technol 193:307–314. doi:10.1016/j.biortech.2015.06.081

    Article  CAS  Google Scholar 

  • Srinivasan P, Sarmah AK, Manley-Harris M (2014) Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature. Sci Total Environ 472:695–703. doi:10.1016/j.scitotenv.2013.11.104

    Article  CAS  Google Scholar 

  • Steinfeld H (2004) The livestock revolution—a global veterinary mission. Vet Parasitol 125:19–41. doi:10.1016/j.vetpar.2004.05.003

    Article  Google Scholar 

  • Sterling TM (1994) Mechanisms of herbicide absorption across plant membranes and accumulation in plant cells in plant cells’ and accumulation across plant membranes of herbicide absorption mechanisms move across plant membranes. Weed Sci 42:263–276

    CAS  Google Scholar 

  • Storteboom HN, Kim SC, Doesken KC, Carlson KH, Davis JG, Pruden A (2007) Response of antibiotics and resistance genes to high-intensity and low-intensity manure management. J Environ Qual 36:1695. doi:10.2134/jeq2007.0006

    Article  CAS  Google Scholar 

  • Sui Q, Cao X, Lu S, Zhao W, Qiu Z, Yu G (2015) Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg Contam. doi:10.1016/j.emcon.2015.07.001

    Article  Google Scholar 

  • Sura S, Degenhardt D, Cessna AJ, Larney FJ, Olson AF, McAllister TA (2015) Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff. Sci Total Environ 521–522:191–199. doi:10.1016/j.scitotenv.2015.03.080

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658. doi:10.1016/S0925-8574(02)00026-5

    Article  Google Scholar 

  • Tadeo JL, Sánchez-Brunete C, Albero B, García-Valcárcel AI, Pérez RA (2012) Analysis of emerging organic contaminants in environmental solid samples. Cent Eur J Chem 10:480–520. doi:10.2478/s11532-011-0157-9

    Article  Google Scholar 

  • Tamminen M, Karkman A, Lõhmus A, Muziasari WI, Takasu H, Wada S, Suzuki S, Virta M (2011) Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ Sci Technol 45:386–391. doi:10.1021/es102725n

    Article  CAS  Google Scholar 

  • Tamtam F, Van Oort F, Le Bot B, Dinh T, Mompelat S, Chevreuil M, Lamy I, Thiry M (2011) Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation. Sci Total Environ 409:540–547. doi:10.1016/j.scitotenv.2010.10.033

    Article  CAS  Google Scholar 

  • Tang X, Lou C, Wang S, Lu Y, Liu M, Hashmi MZ, Liang X, Li Z, Liao Y, Qin W, Fan F, Xu J, Brookes PC (2015) Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: evidence from four field experiments in south of China. Soil Biol Biochem 90:179–187. doi:10.1016/j.soilbio.2015.07.027

    Article  CAS  Google Scholar 

  • Tanoue R, Sato Y, Motoyama M, Nakagawa S, Shinohara R, Nomiyama K (2012) Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J Agric Food Chem 60:10203–10211. doi:10.1021/jf303142t

    Article  CAS  Google Scholar 

  • Tarazona JV, Cesnaitis R, Herranz-Montes FJ, Versonnen B (2013) Identification of chemical hazards for terrestrial plants in the regulatory context: comparison of OECD and ISO guidelines. Chemosphere 93:2578–2584. doi:10.1016/j.chemosphere.2013.09.078

    Article  CAS  Google Scholar 

  • Teeter JS, Meyerhoff DR (2003) Aerobic degradation of tylosin in cattle, chicken, and swine excreta. Environ Res 93:45–51. doi:10.1016/S0013-9351(02)00086-5

    Article  CAS  Google Scholar 

  • Teijon G, Candela L, Tamoh K, Molina-Diaz A, Fernandez-Alba AR (2010) Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 408:3584–3595. doi:10.1016/j.scitotenv.2010.04.041

    Article  CAS  Google Scholar 

  • The Commision of the European Communities (2005) Commission regulation (EC) No 378/2005 of 4 March 2005 on detailed rules for the implementation of Regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the duties and tasks of the Community Reference Laboratory concerning. Brussels

    Google Scholar 

  • The European Agency for the Evaluation of Medical Products (2000) Environmental impact assessment (EIAs) for veteinary medicinal products (VMPs): phase I. London

    Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167. doi:10.1002/jpln.200390023

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2005) Microbial inhibittion by pharmaceutical antibiotics in different soils-dose-responcse relations determinaed with the iron(III) reduction test. Environ Toxicol Chem 24:869. doi:10.1897/04-166R.1

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465. doi:10.1016/j.chemosphere.2005.01.023

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Peters D (2007) Photodegradation of pharmaceutical antibiotics on slurry and soil surfaces. Landbauforschung Volkenrode 57:13–23

    CAS  Google Scholar 

  • Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778. doi:10.1002/1526-4998(200009)56:9<767::AID-PS198>3.0.CO;2-Q

    Google Scholar 

  • Trapp S, Mc Farlane JC (1995) Plant contamination: modeling and simulation of organic chemical processes. CRC Press, Boca Raton, FL

    Google Scholar 

  • Tuhkanen T, Vieno NM, Härkki H, Tuhkanen T, Kronberg L (2007) Occurence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol 41:5077–5084. doi:10.1021/es062720x

    Article  CAS  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci U S A 111:15202–15207. doi:10.1073/pnas.1409836111

    Article  CAS  Google Scholar 

  • US Food and Drug Administration (2013) Guidance for industry #213 new animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food-producing animals: recommendations for drug sponsors for voluntarily aligning product use conditions with, Federal Register. Rockville

    Google Scholar 

  • Uslu MÖ, Yediler A, Balcıoğlu IA, Schulte-Hostede S (2007) Analysis and sorption behavior of fluoroquinolones in solid matrices. Water Air Soil Pollut 190:55–63. doi:10.1007/s11270-007-9580-0

    Article  CAS  Google Scholar 

  • Vaclavik E, Halling-Sørensen B, Ingerslev F (2004) Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere 56:667–676. doi:10.1016/j.chemosphere.2004.02.018

    Article  CAS  Google Scholar 

  • Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K (2014) Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ 500–501C:250–269. doi:10.1016/j.scitotenv.2014.08.075

    Article  CAS  Google Scholar 

  • Verlicchi P, Zambello E (2014) How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci Total Environ 470–471:1281–1306. doi:10.1016/j.scitotenv.2013.10.085

    Article  CAS  Google Scholar 

  • Verlicchi P, Zambello E (2015) Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review. Sci Total Environ 538:750–767. doi:10.1016/j.scitotenv.2015.08.108

    Article  CAS  Google Scholar 

  • Wade Miller G (2006) Integrated concepts in water reuse: managing global water needs. Desalination 187:65–75. doi:10.1016/j.desal.2005.04.068

    Article  CAS  Google Scholar 

  • Wagil M, Białk-Bielińska A, Puckowski A, Wychodnik K, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Stolte S (2015) Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ Sci Pollut Res 22:2566–2573. doi:10.1007/s11356-014-3497-0

    Article  CAS  Google Scholar 

  • Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781. doi:10.1038/35021219

    Article  CAS  Google Scholar 

  • Wang Q, Yates SR (2008) Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. J Agric Food Chem 56:1683–1688. doi:10.1021/jf072927p

    Article  CAS  Google Scholar 

  • Wang J, Lin H, Sun W, Xia Y, Ma J, Fu J, Zhang Z, Wu H, Qian M (2016) Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application. J Hazard Mater 304:49–57. doi:10.1016/j.jhazmat.2015.10.038

    Article  CAS  Google Scholar 

  • Warren CR (2013) Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. New Phytol 198:476–485. doi:10.1111/nph.12171

    Article  CAS  Google Scholar 

  • Wei R, Ge F, Zhang L, Hou X, Cao Y, Gong L, Chen M, Wang R, Bao E (2016) Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere 144:2377–2383. doi:10.1016/j.chemosphere.2015.10.126

    Article  CAS  Google Scholar 

  • WHO (2000) WHO global principles for the containment of antimicrobial resistance in animals intended for food. World Health, Geneva, Switzerland

    Google Scholar 

  • Winckler C, Grafe A (2001) Use of veterinary drugs in intensive animal production: evidence for persistence of tetracycline in pig slurry. J Soil Sediment 1:66–70. doi:10.1007/BF02987711

    Article  CAS  Google Scholar 

  • Winckler C, Engels H, Hund-Rinke K, Luckow T, Simon M, Steffens G (2003) Verhalten von Tetrazyklinen und anderen. Veterinär-antibiotika in Wirtschafts-dünger und Boden. Umweltbundesamt, 44/04

    Google Scholar 

  • Woodward KN (2008) Assessment of user safety, exposure and risk to veterinary medicinal products in the European Union. Regul Toxicol Pharmacol 50:114–128. doi:10.1016/j.yrtph.2007.10.007

    Article  CAS  Google Scholar 

  • World Health Organization (2001) Monitoring antimicrobial usage in food animals for the protection of human health. WHO, Geneva. doi: WHO/CDS/CSR/EPH/2002.11

    Google Scholar 

  • Wu N, Qiao M, Zhang B, Cheng WD, Zhu YG (2010a) Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ Sci Technol 44:6933–6939. doi:10.1021/es1007802

    Article  CAS  Google Scholar 

  • Wu C, Spongberg AL, Witter JD, Fang M, Ames A, Czajkowski KP (2010b) Detection of pharmaceuticals and personal care products in agricultural soils receiving biosolids application. Clean Soil Air Water 38:230–237. doi:10.1002/clen.200900263

    Article  CAS  Google Scholar 

  • Wu X, Wei Y, Zheng J, Zhao X, Zhong W (2011) The behavior of tetracyclines and their degradation products during swine manure composting. Bioresour Technol 102:5924–5931. doi:10.1016/j.biortech.2011.03.007

    Article  CAS  Google Scholar 

  • Wu X, Ernst F, Conkle JL, Gan J (2013) Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ Int 60:15–22. doi:10.1016/j.envint.2013.07.015

    Article  CAS  Google Scholar 

  • Wu X, Dodgen LK, Conkle JL, Gan J (2015) Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review. Sci Total Environ 536:655–666. doi:10.1016/j.scitotenv.2015.07.129

    Article  CAS  Google Scholar 

  • Yang Q, Zhang J, Zhu K, Zhang H (2009) Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci 21:954–959. doi:10.1016/S1001-0742(08)62367-0

    Article  CAS  Google Scholar 

  • Zhang T, Zhang XX, Ye L (2011) Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One 6:e26041. doi:10.1371/journal.pone.0026041

    Article  CAS  Google Scholar 

  • Zhang CL, Guo XL, Li BY, Wang Y (2012) Biodegradation of ciprofloxacin in soil. J Mol Liq 173:184–186. doi:10.1016/j.molliq.2012.06.016

    Article  CAS  Google Scholar 

  • Zhang W, Huang MH, Qi FF, Sun PZ, Van Ginkel SW (2013a) Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors. Bioresour Technol 150:9–14. doi:10.1016/j.biortech.2013.09.081

    Article  CAS  Google Scholar 

  • Zhang DQ, Gersberg RM, Hua T, Zhu J, Goyal MK, Ng WJ, Tan SK (2013b) Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Environ Pollut 181:98–106. doi:10.1016/j.envpol.2013.06.016

    Article  CAS  Google Scholar 

  • Zhang D, Gersberg RM, Ng WJ, Tan SK (2014a) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639. doi:10.1016/j.envpol.2013.09.009

    Article  CAS  Google Scholar 

  • Zhang Y, Tang H, Zhou Q, Zhu L (2014b) Effect of temperature and metal ions on degradation of oxytetracycline in different matrices. J Environ Prot 5:672–680. doi:10.4236/jep.2014.58068

    Article  CAS  Google Scholar 

  • Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408:1069–1075. doi:10.1016/j.scitotenv.2009.11.014

    Article  CAS  Google Scholar 

  • Zheng W, Zhang L, Zhang K, Wang X, Xue F (2012) Determination of tetracyclines and their epimers in agricultural soil fertilized with swine manure by ultra-high-performance liquid chromatography tandem mass spectrometry. J Integr Agric 11:1189–1198. doi:10.1016/S2095-3119(12)60114-2

    Article  CAS  Google Scholar 

  • Zhou LJ, Ying GG, Liu S, Zhao JL, Chen F, Zhang RQ, Peng FQ, Zhang QQ (2012) Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1244:123–138. doi:10.1016/j.chroma.2012.04.076

    Article  CAS  Google Scholar 

  • Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110:3435–3440. doi:10.1073/pnas.1222743110

    Article  Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380. doi:10.1016/j.soilbio.2006.01.031

    Article  CAS  Google Scholar 

  • Zuo Y, Lin Y (2007) Solvent effects on the silylation-gas chromatography-mass spectrometric determination of natural and synthetic estrogenic steroid hormones. Comment on “Formation of chlorinated estrones via hypochlorous disinfection of wastewater effluent containing estrone” by Hideyuki Nakamura, Ryoko Kuruto-Niwa, Mitsuo Uchida and Yoshiyasu Terao. Chemosphere 69:1175–1176. doi:10.1016/j.chemosphere.2007.03.065

    Article  CAS  Google Scholar 

  • Zuo Y, Zhang K, Deng Y (2006) Occurrence and photochemical degradation of 17α-ethinylestradiol in Acushnet river estuary. Chemosphere 63:1583–1590. doi:10.1016/j.chemosphere.2005.08.063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Science Center (Poland) under decision number UMO-2014/13/N/ST4/04127, by the National Center for Research and Development (NCBR) (Poland) under grant TANGO1/268806/NCBR/2015 and by the Polish Ministry of Research and Higher Education under grant DS 530–8616-D593–16 and DS 530–8615-D592–15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda Caban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Łukaszewicz, P., Maszkowska, J., Mulkiewicz, E., Kumirska, J., Stepnowski, P., Caban, M. (2016). Impact of Veterinary Pharmaceuticals on the Agricultural Environment: A Re-inspection. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 243. Reviews of Environmental Contamination and Toxicology, vol 243. Springer, Cham. https://doi.org/10.1007/398_2016_16

Download citation

Publish with us

Policies and ethics