Skip to main content

Tetrathiafulvalene-Based Magnets of Lanthanides

  • Chapter
  • First Online:
Organometallic Magnets

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 64))

Abstract

Tetrathiafulvalene (TTF)-based ligands and lanthanide ions have been intensively used for their electronic conductivity and optical properties, respectively. Their combination leads to a new class of coordination compounds that are able to display single-molecule magnet (SMM) behavior. Magnetic bistability resulting of such behavior could find potential applications in high-density data storage and quantum computing. In this chapter, a library of TTF-based magnets containing lanthanide ions is presented. Among this series, the influence of the coordination sphere and intra- and intermolecular interactions such as exchange, dipolar, supramolecular, and hyperfine interactions is probed through molecular engineering, magnetic dilutions, and isotopic enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most of the rare earths are not rare: cerium is more abundant than copper on earth, and thulium (the most rare) is more abundant than silver.

References

  1. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143

    Article  CAS  Google Scholar 

  2. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695

    Article  CAS  PubMed  Google Scholar 

  3. Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2017) A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew Chem Int Ed 56:11445–11449

    Article  CAS  Google Scholar 

  4. Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548:439–442

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi H, Kobayashi A, Cassoux P (2000) BETS as a source of molecular magnetic superconductors (BETS = bis(ethylenedithio)tetraselenafulvalene). Chem Soc Rev 29:325–333

    Article  CAS  Google Scholar 

  6. Coronado E, Galán-Mascarós JR, Gómez-García CJ, Laukhin V (2000) Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408:447–449

    Article  CAS  PubMed  Google Scholar 

  7. Yamada J, Sugimoto T (2004) TTF chemistry: fundamentals and applications of tetrathiafulvalene. Kodansha, Tokyo, Springer, Berlin

    Google Scholar 

  8. Bendikov M, Wudl F, Perepichka DF (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem Rev 104:4891–4946

    Article  CAS  PubMed  Google Scholar 

  9. Gorgues A, Hudhomme P, Sallé M (2004) Highly functionalized tetrathiafulvalenes: riding along the synthetic trail from electrophilic alkynes. Chem Rev 104:5151–5184

    Article  CAS  PubMed  Google Scholar 

  10. Lorcy D, Bellec N, Fourmigué M, Avarvari N (2009) Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts. Coord Chem Rev 253:1398–1438

    Article  CAS  Google Scholar 

  11. Pointillart F, Golhen S, Cador O, Ouahab L (2013) Paramagnetic 3d coordination complexes involving redox-active tetrathiafulvalene derivatives: an efficient approach to elaborate multi-properties materials. Dalton Trans 42:1949–1960

    Article  CAS  PubMed  Google Scholar 

  12. Gavrilenko KS, Gal YL, Cador O, Golhen S, Ouahab L (2007) First trinuclear paramagnetic transition metal complexes with redox active ligands derived from TTF: Co2M(PhCOO)6(TTF-CHCH-py)2·2CH3CN, M = CoII, MnII. Chem Commun 280–282

    Google Scholar 

  13. Benbellat N, Gavrilenko KS, Le Gal Y, Cador O, Golhen S, Gouasmia A, Fabre J-M, Ouahab L (2006) Co(II)−Co(II) paddlewheel complex with a redox-active ligand derived from TTF. Inorg Chem 45:10440–10442

    Article  CAS  PubMed  Google Scholar 

  14. Kolotilov SV, Cador O, Pointillart F, Golhen S, Le Gal Y, Gavrilenko KS, Ouahab L (2010) A new approach towards ferromagnetic conducting materials based on TTF-containing polynuclear complexes. J Mater Chem 20:9505–9514

    Article  CAS  Google Scholar 

  15. Liu S-X, Ambrus C, Dolder S, Neels A, Decurtins S (2006) A dinuclear Ni(II) complex with two types of intramolecular magnetic couplings: Ni(II)−Ni(II) and Ni(II)−TTF•+. Inorg Chem 45:9622–9624

    Article  CAS  PubMed  Google Scholar 

  16. Cui L, Geng Y-F, Leong CF, Ma Q, D’Alessandro DM, Deng K, Zeng Q-D, Zuo J-L (2016) Synthesis, properties and surface self-assembly of a pentanuclear cluster based on the new π-conjugated TTF-triazole ligand. Sci Rep 6:srep25544

    Article  CAS  Google Scholar 

  17. Mitsumoto K, Nishikawa H, Newton GN, Oshio H (2012) Encapsulation controlled single molecule magnetism in tetrathiafulvalene-capped cyanide-bridged cubes. Dalton Trans 41:13601–13608

    Article  CAS  PubMed  Google Scholar 

  18. Faulkner S, Burton-Pye BP, Khan T, Martin LR, Wray SD, Skabara PJ (2002) Interaction between tetrathiafulvalene carboxylic acid and ytterbium DO3A: solution state self-assembly of a ternary complex which is luminescent in the near IR. Chem Commun 1668–1669

    Google Scholar 

  19. Cui H, Otsuka T, Kobayashi A, Takeda N, Ishikawa M, Misaki Y, Kobayashi H (2003) Structural, electrical, and magnetic properties of a series of molecular conductors based on BDT-TTP and lanthanoid nitrate complex anions (BDT-TTP = 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene). Inorg Chem 42:6114–6122

    Article  CAS  PubMed  Google Scholar 

  20. Pointillart F, Le Gal Y, Golhen S, Cador O, Ouahab L (2009) 4f Gadolinium(III) complex involving tetrathiafulvalene-amido-2-pyrimidine-1-oxide as a ligand. Inorg Chem 48:4631–4633

    Article  CAS  PubMed  Google Scholar 

  21. Gao F, Cui L, Liu W, Hu L, Zhong Y-W, Li Y-Z, Zuo J-L (2013) Seven-coordinate lanthanide sandwich-type complexes with a tetrathiafulvalene-fused Schiff base ligand. Inorg Chem 52:11164–11172

    Article  CAS  PubMed  Google Scholar 

  22. Gao F, Zhang X-M, Cui L, Deng K, Zeng Q-D, Zuo J-L (2014) Tetrathiafulvalene-supported triple-decker phthalocyaninato dysprosium(III) complex: synthesis, properties and surface assembly. Sci Rep 4:srep05928

    Google Scholar 

  23. Ran Y-F, Steinmann M, Sigrist M, Liu S-X, Hauser J, Decurtins S (2012) Tetrathiafulvalene-based lanthanide coordination complexes: synthesis, crystal structure, optical and electrochemical characterization. Comptes Rendus Chim 15:838–844

    Article  CAS  Google Scholar 

  24. Ueki S, Nogami T, Ishida T, Tamura M (2006) ET and TTF salts with lanthanide complex ions showing frequency-dependent ac magnetic susceptibility. Mol Cryst Liq Cryst 455:129–134

    Article  CAS  Google Scholar 

  25. Pointillart F, le Guennic B, Cador O, Maury O, Ouahab L (2015) Lanthanide ion and tetrathiafulvalene-based ligand as a “magic” couple toward luminescence, single molecule magnets, and magnetostructural correlations. Acc Chem Res 48:2834–2842

    Article  CAS  PubMed  Google Scholar 

  26. D’Aleo A, Pointillart F, Ouahab L, Andraud C, Maury O (2012) Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red. Coord Chem Rev 256:1604–1620

    Article  CAS  Google Scholar 

  27. Pointillart F, Guennic BL, Golhen S, Cador O, Ouahab L (2013) Slow magnetic relaxation in radical cation tetrathiafulvalene-based lanthanide(III) dinuclear complexes. Chem Commun 49:11632–11634

    Article  CAS  Google Scholar 

  28. Uzelmeier CE, Smucker BW, Reinheimer EW, Shatruk M, O’Neal AW, Fourmigué M, Dunbar KR (2006) A series of complexes of the phosphorus-based TTF ligand o-P2 with the metal ions FeII, CoII, NiII, PdII, PtII, and AgI. Dalton Trans 5259–5268

    Google Scholar 

  29. Xiong J, Li G-N, Sun L, Li Y-Z, Zuo J-L, You X-Z (2011) Mono- and dinuclear Co/Ni complexes bearing redox-active tetrathiafulvaleneacetylacetonate ligands – syntheses, crystal structures, and properties. Eur J Inorg Chem 5173–5181

    Article  CAS  Google Scholar 

  30. Guo YN, Xu GF, Gamez P, Zhao L, Lin SY, Deng R, Tang J, Zhang HJ (2010) Two-step relaxation in a linear tetranuclear dysprosium (III) aggregate showing single-molecule magnet behavior. J Am Chem Soc 132:8538–8539

    Article  CAS  PubMed  Google Scholar 

  31. Guo YN, Xu GF, Wernsdorfer W, Ungur L, Guo Y, Tang J, Zhang HJ, Chibotaru LF, Powell AK (2011) Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J Am Chem Soc 133:11948–11951

    Article  CAS  PubMed  Google Scholar 

  32. Lin S-Y, Wernsdorfer W, Ungur L, Powell AK, Guo Y-N, Tang J, Zhao L, Chibotaru LF, Zhang H-J (2012) Coupling Dy3 triangles to maximize the toroidal moment. Angew Chem Int Ed 51:12767–12771

    Article  CAS  Google Scholar 

  33. Guo Y-N, Ungur L, Granroth GE, Powell AK, Wu C, Nagler SE, Tang J, Chibotaru LF, Cui D (2014) An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Sci Rep 4:5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Layfield RA (2014) Organometallic single-molecule magnets. Organometallics 33:1084–1099

    Article  CAS  Google Scholar 

  35. Guo Y-N, Xu G-F, Guo Y, Tang J (2011) Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans 40:9953–9963

    Article  CAS  PubMed  Google Scholar 

  36. Zhang P, Zhang L, Tang J (2015) Lanthanide single molecule magnets: progress and perspective. Dalton Trans 44:3923–3929

    Article  CAS  PubMed  Google Scholar 

  37. Ungur L, Lin S-Y, Tang J, Chibotaru LF (2014) Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem Soc Rev 43:6894–6905

    Article  CAS  PubMed  Google Scholar 

  38. Pointillart F, Cador O, Le Guennic B, Ouahab L (2017) Uncommon lanthanide ions in purely 4f single molecule magnets. Coord Chem Rev 346:150–175

    Article  CAS  Google Scholar 

  39. Pointillart F, Le Gal Y, Golhen S, Cador O, Ouahab L (2011) Single-molecule magnet behaviour in a tetrathiafulvalene-based electroactive antiferromagnetically coupled dinuclear dysprosium(III) complex. Chem Eur J 17:10397–10404

    Article  CAS  PubMed  Google Scholar 

  40. Llunell M, casanova D, Cicera J, Bofill JM, Alemany P, Alvarez S (2013) SHAPE (version 2.1)

    Google Scholar 

  41. Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078–2085

    Article  CAS  Google Scholar 

  42. Sievers J (1982) Asphericity of 4f-shells in their Hund’s rule ground states. Z Für Phys B Condens Matter 45:289–296

    Article  CAS  Google Scholar 

  43. Ungur L, Chibotaru LF (2011) Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys Chem Chem Phys 13:20086–20090

    Article  CAS  PubMed  Google Scholar 

  44. Ungur L, Chibotaru LF (2016) Strategies toward high-temperature lanthanide-based single-molecule magnets. Inorg Chem 55:10043–10056

    Article  CAS  PubMed  Google Scholar 

  45. Cosquer G, Pointillart F, Golhen S, Cador O, Ouahab L (2013) Slow magnetic relaxation in condensed versus dispersed dysprosium(III) mononuclear complexes. Chem Eur J 19:7895–7903

    Article  CAS  PubMed  Google Scholar 

  46. Jung J, Cador O, Bernot K, Pointillart F, Luzon J, Le Guennic B (2014) Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation. Beilstein J Nanotechnol 5:2267–2274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. da Cunha TT, Jung J, Boulon M-E et al (2013) Magnetic poles determinations and robustness of memory effect upon solubilization in a DyIII-based single ion magnet. J Am Chem Soc 135:16332–16335

    Article  PubMed  CAS  Google Scholar 

  48. Orbach R (1961) Spin-lattice relaxation in rare-earth salts. Proc R Soc Lond A 264:458–484

    Article  CAS  Google Scholar 

  49. Pointillart F, Bernot K, Golhen S, Le Guennic B, Guizouarn T, Ouahab L, Cador O (2015) Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex. Angew Chem Int Ed 54:1504–1507

    Google Scholar 

  50. Gatteschi D, Sessoli R (2003) Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed 42:268–297

    Article  CAS  Google Scholar 

  51. Ishikawa N, Sugita M, Wernsdorfer W (2005) Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J Am Chem Soc 127:3650–3651

    Article  CAS  PubMed  Google Scholar 

  52. Ishikawa N, Sugita M, Wernsdorfer W (2005) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed 44:2931–2935

    Article  CAS  Google Scholar 

  53. Flores Gonzales J, Pointillart F, Ouahab L, Cador O. Hyperfine coupling and slow magnetic relaxation in isotopically enriched Dy(III) mononuclear single-molecule magnets. Submitted

    Google Scholar 

  54. Ebenhöh W, Ehlers VJ, Ferch J (1967) Hyperfine-structure measurements on Dy161 and Dy163. Z Für Phys 200:84–92

    Article  Google Scholar 

  55. Childs WJ (1970) Hyperfine structure of 5I8,7 atomic states of Dy161,163 and the ground-state nuclear moments. Phys Rev A 2:1692–1701

    Article  Google Scholar 

  56. Kishi Y, Pointillart F, Lefeuvre B, Riobé F, Guennic BL, Golhen S, Cador O, Maury O, Fujiwara H, Ouahab L (2017) Isotopically enriched polymorphs of dysprosium single molecule magnets. Chem Commun 53:3575–3578

    Article  CAS  Google Scholar 

  57. Fujiwara H, Yokota S, Hayashi S, Takemoto S, Matsuzaka H (2010) Development of photofunctional materials using TTF derivatives containing a 1,3-benzothiazole ring. Phys B Condens Matter 405:S15–S18

    Article  CAS  Google Scholar 

  58. Speed S, Feng M, Garcia GF et al (2017) Lanthanide complexes involving multichelating TTF-based ligands. Inorg Chem Front 4:604–617

    Article  CAS  Google Scholar 

  59. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  60. Abragam A, Bleaney B (2012) Electron paramagnetic resonance of transition ions.Reprint edn. Oxford University Press, Oxford

    Google Scholar 

  61. Feng M, Pointillart F, Lefeuvre B, Dorcet V, Golhen S, Cador O, Ouahab L (2015) Multiple single-molecule magnet behaviors in dysprosium dinuclear complexes involving a multiple functionalized tetrathiafulvalene-based ligand. Inorg Chem 54:4021–4028

    Article  CAS  PubMed  Google Scholar 

  62. Jia C, Liu S-X, Tanner C, Leiggener C, Neels A, Sanguinet L, Levillain E, Leutwyler S, Hauser A, Decurtins S (2007) An experimental and computational study on intramolecular charge transfer: a tetrathiafulvalene-fused dipyridophenazine molecule. Chem Eur J 13:3804–3812

    Article  CAS  PubMed  Google Scholar 

  63. Pointillart F, Jung J, Berraud-Pache R et al (2015) Luminescence and single-molecule magnet behavior in lanthanide complexes involving a tetrathiafulvalene-fused dipyridophenazine ligand. Inorg Chem 54:5384–5397

    Article  CAS  PubMed  Google Scholar 

  64. Kuropatov V, Klementieva S, Fukin G, Mitin A, Ketkov S, Budnikova Y, Cherkasov V, Abakumov G (2010) Novel method for the synthesis of functionalized tetrathiafulvalenes, an acceptor–donor–acceptor molecule comprising of two o-quinone moieties linked by a TTF bridge. Tetrahedron 66:7605–7611

    Article  CAS  Google Scholar 

  65. Pointillart F, Klementieva S, Kuropatov V, Gal YL, Golhen S, Cador O, Cherkasov V, Ouahab L (2012) A single molecule magnet behaviour in a D3h symmetry Dy(III) complex involving a quinone–tetrathiafulvalene–quinone bridge. Chem Commun 48:714–716

    Article  CAS  Google Scholar 

  66. Soussi K, Jung J, Pointillart F, Guennic BL, Lefeuvre B, Golhen S, Cador O, Guyot Y, Maury O, Ouahab L (2015) Magnetic and photo-physical investigations into Dy(III) and Yb(III) complexes involving tetrathiafulvalene ligand. Inorg Chem Front 2:1105–1117

    Article  CAS  Google Scholar 

  67. Huang G, Fernandez-Garcia G, Badiane I et al. Magnetic slow relaxation in a metal organic framework made of chains of ferromagnetically coupled single-molecule magnets. Chem Eur J. doi: https://doi.org/10.1002/chem.201800095

    Article  CAS  Google Scholar 

  68. Zhang P, Jung J, Zhang L, Tang J, Le Guennic B (2016) Elucidating the magnetic anisotropy and relaxation dynamics of low-coordinate lanthanide compounds. Inorg Chem 55:1905–1911

    Article  CAS  PubMed  Google Scholar 

  69. Pointillart F, Guennic BL, Golhen S, Cador O, Maury O, Ouahab L (2013) A redox-active luminescent ytterbium based single molecule magnet. Chem Commun 49:615–617

    Article  CAS  Google Scholar 

  70. Pointillart F, Golhen S, Cador O, Ouahab L Slow magnetic relaxation in a redox-active tetrathiafulvalene-based ferromagnetic dysprosium complex. Eur J Inorg Chem 2014, 2014:4558–4563

    Article  CAS  Google Scholar 

  71. Pointillart F, Le Guennic B, Maury O, Golhen S, Cador O, Ouahab L (2013) Lanthanide dinuclear complexes involving tetrathiafulvalene-3-pyridine-N-oxide ligand: semiconductor radical salt, magnetic, and photophysical studies. Inorg Chem 52:1398–1408

    Article  CAS  PubMed  Google Scholar 

  72. Pointillart F, Guizouarn T, Lefeuvre B, Golhen S, Cador O, Ouahab L (2015) Rational design of a lanthanide-based complex featuring different single-molecule magnets. Chem Eur J 21:16929–16934

    Article  CAS  PubMed  Google Scholar 

  73. Belio Castro A, Jung J, Golhen S, Le Guennic B, Ouahab L, Cador O, Pointillart F (2016) Slow magnetic relaxation in unprecedented mono-dimensional coordination polymer of ytterbium involving tetrathiafulvalene-dicarboxylate linker. Magnetochemistry 2:26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Cador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cador, O., Pointillart, F. (2018). Tetrathiafulvalene-Based Magnets of Lanthanides. In: Chandrasekhar, V., Pointillart, F. (eds) Organometallic Magnets . Topics in Organometallic Chemistry, vol 64. Springer, Cham. https://doi.org/10.1007/3418_2018_10

Download citation

Publish with us

Policies and ethics