Skip to main content

Synthesis of dicarboxylic acids by transition-metal catalyzed oxidative cleavage of terminal-unsaturated fatty acids

  • Chapter
  • First Online:
Organic Peroxygen Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 164))

Abstract

9-Decenoic- and 13-tetradecenoic methylesters, obtained by Re-catalysed metathesis of natural C18- and C22-fatty esters with ethylene as well as the industrially produced 10-undecenoic methylester were used as starting materials for the preparation of dicarboxylic esters. Two different reaction routes were applied. Ketonisation of the terminal unsaturated fatty acid esters by Wacker-oxidation using PdCl2/CuCl or RhCl3/FeCl3 as catalysts led to methyl keto-fatty acid esters, which were oxidatively cleaved by Mn-catalysed oxidation with air at 115 °C to mixtures of C8-/C9-, C9-/C10- and C12-/C13-dicarboxylic monomethylesters with conversion rates and selectivities of 90%.

Pure C9-, C10- and C13-dicarboxylic acids were achieved in isolated yields of 80–90% by an one step oxidative cleavage of the terminal unsaturated fatty acids with peracetic acid as oxidant and different ruthenium compounds e.g. Ru(acac)3 as catalysts. Starting with 10-undecenoic acid, a simple catalyst recycling could be established.

Replacing peracetic acid with H2O2 or acetic acid/H2O2 the ruthenium-catalyzed oxidative cleavage of C=C-bonds did not proceed because of an unproductive decomposition of H2O2. With Re2O7 as catalyst hardly any decomposition of H2O2 took place and using 1,4-dioxane as solvent, olefins were converted to vicinal diols in fair yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. Baumann H, Bühler M, Fochem H, Hirsinger F, Zoebelein H, Falbe J (1988) Angew Chem 100: 41

    Google Scholar 

  2. Harries C (1905) Liebigs Ann Chem 343: 311

    Google Scholar 

  3. Criegee R (1975) Angew Chem 87: 765

    Google Scholar 

  4. Heins A, Witthaus M (1984) Henkel-Referate 20: 42

    Google Scholar 

  5. Zaidman B, Kisilev A, Sasson Y, Garti N (1988) J Amer Oil Chem Soc 65: 611

    Google Scholar 

  6. Banks RL, Bailey GC (1964) Ind Eng Chem, Prod Res Develop 3: 170

    Google Scholar 

  7. Ivin KJ (1983) Olefin metathesis, Academic, London

    Google Scholar 

  8. Dragutan V, Balaban AT, Dimonie M (1985) Olefin metathesis and ring-opening polymerization of cyclo-olefins, J Wiley, Chichester, Editura Academiei, Bukarest

    Google Scholar 

  9. Warwel S (1987) Erdöl — Erdgas — Kohle, 103: 238

    Google Scholar 

  10. van Dam PB, Mittelmeijer MC, Boelhouwer C, J Chem Soc, Chem Commun 1972: 1221

    Google Scholar 

  11. Boelhouwer C, Mol JC (1985) Prog Lipid Res 24: 243

    Google Scholar 

  12. Mol JC (1991) J Mol Catal 65: 145

    Google Scholar 

  13. Verkuijlen E, Kapteijn F, Mol JC, Boelhouwer C, J Chem Soc, Chem Commun 1977: 198

    Google Scholar 

  14. Warwel S, Jägers H-G, Deckers A (2. 3. 90/5. 9. 91) Ger Offen DE4006540

    Google Scholar 

  15. Warwel S (1992) Nachr Chem Tech Lab 40: 314

    Google Scholar 

  16. Warwel S, Deckers A, Döring N, Ercklentz B, Jägers H-G, Thomas S (1992) In: Statusbericht zum BMFT-Forschungsverbundvorhaben „Neue Einsatzmöglichkeiten nativer Öle und Fette als Chemierohstoffe“. BMFT-Projektträger Biologie-Energie-Ökologie, Forschungszentrum Jülich GmbH, Jülich, p 83

    Google Scholar 

  17. Herrmann WA, Kuchler JG, Felixberger JK, Herdtweck E, Wagner W (1988) Angew Chemie 100: 420

    Google Scholar 

  18. Herrmann WA, Wagner, W Volkhardt U (5. 12. 1989/13. 6. 1991) (Hoechst AG) Ger Offen DE3940196

    Google Scholar 

  19. Herrmann WA (1990) J Organometal Chem 382: 1

    Google Scholar 

  20. Herrmann WA, Wagner W, Flessner UN, Volkhardt U, Komber H (1991) Angew Chem 103: 1704

    Google Scholar 

  21. Warwel S, Deckers A, Jägers H-G, Ercklentz B, Harperscheid M, Angew Chem, in preparation

    Google Scholar 

  22. Warwel S, Pompetzki W, Deckwirth EA (1991) Fat Sci Technol 93: 210

    Google Scholar 

  23. Walens HA, Koob RP, Ault WC, Maerker G (1965) J Amer Oil Chemists Soc 42: 126

    Google Scholar 

  24. Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H (1959) Angew Chem 71: 176

    Google Scholar 

  25. Herrmann WA Kontakte (Darmstadt) 1991: (1) 22

    Google Scholar 

  26. Clement WH, Selwitz CM (1964) J Org Chem 29: 241

    Google Scholar 

  27. Dzhemileva GA, Odinokow NV, Dzhemileva UM, Tolstikov GA (1983) Bull Acad Sci USSR 32: 307

    Google Scholar 

  28. Subramaniam CS Synthesis 1987: 468

    Google Scholar 

  29. McQuillin FJ, Parker DG, J Chem Soc, Perkin I 1975: 2092

    Google Scholar 

  30. Weissermel K, Arpe HJ (1988) Industrielle organische Chemie, 3rd edn, VCH, Weinheim, p 256

    Google Scholar 

  31. Steadman ThR, Peterson JOH (1959) (National Research Corp), US Pat 2847432 (12. 8. 58), CA 53: 4143

    Google Scholar 

  32. O'Brien DA (1986) (Procter & Gamble Comp), EP 153522 (4. 9. 85), CA 104: 131950

    Google Scholar 

  33. Djerassi C, Engle R (1953) J Amer Chem Soc 75: 3838

    Google Scholar 

  34. Berkowitz LM, Rylander PN (1958) J Amer Chem Soc 80: 6682

    Google Scholar 

  35. Lee DG (1969) In: Augustine RL (ed) Oxidation, vol I, Marcel Dekker, New York

    Google Scholar 

  36. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds, Academic, New York pp 162, 297

    Google Scholar 

  37. Gore ES (1983) Platinium metals Rev 27: 111

    Google Scholar 

  38. Seddon EA, Seddon KR (1984) In: Clark RJH (ed) The chemistry of ruthenium. Collection of monographs no 19, Elsevier, Amsterdam, p 52

    Google Scholar 

  39. Haines AH (1985) Methods for the oxidation of organic compounds, Academic Press, London p 128

    Google Scholar 

  40. Courtney JL (1986) In: Mijs WJ, de Jonge CRHI (ed) Organic syntheses by oxidation with metal compounds, Plenum Press, New York p 445

    Google Scholar 

  41. Hudlicky M (1990) Oxidations in organic chemistry, ACS Monograph 186, American Chemical Society, Washington p 82

    Google Scholar 

  42. Carlsen PHJ, Katsuki T, Martin VS, Sharpless KB (1981) J Org Chem 46: 3936

    Google Scholar 

  43. Starks ChM, Washecheck PH (1971) (Continental Oil Co) US Pat 3547962 (19. 12. 1968/15. 2. 1970), CA 74: 140895

    Google Scholar 

  44. Kebyls KA, Dubeck M (1969) (Ethyl Corp), US Pat 3409649 (14. 12. 1964/5. 11. 1968), CA 70: 114575

    Google Scholar 

  45. Wolfe S, Hasan SK, Campball JR, J Chem Soc, Chem Commun 1970: 1420

    Google Scholar 

  46. Lee DG, Chang VS, Helliwel S (1976) J Org Chem 41: 3644

    Google Scholar 

  47. Foglia TA, Barr PA, Malloy AJ, Costanzo MJ (1977) J Am Oil Chem Soc 54: 870

    Google Scholar 

  48. Foglia TA, Barr PA, Malloy AJ (1977) J Am Oil Chem Soc 54: 858

    Google Scholar 

  49. Mac Lean AF, Stautzenberger AL (1969) (Celanese Corp) Ger Offen DE 1568363 (29. 12. 1966/9. 7. 1970), CA 70: 57090

    Google Scholar 

  50. Mac Lean AF (1970) (Celanese Corp) Ger Offen DE 1568364 (30. 12. 1966/2. 4. 1970), CA 72: 21323

    Google Scholar 

  51. Washecheck PH (1971) (Continental Oil Co), Ger Offen DE 2046034 (17. 9. 1970/19. 5. 1971), CA 75: 35158

    Google Scholar 

  52. Merk W, Schreyer G, Weigert W (1972) (Degussa AG) Ger Offen DE 2106307 (10. 2. 1971/31. 8. 1972), CA 77: 151485

    Google Scholar 

  53. Sheng MN (1974) (Atlantic Richfield Co) US Pat 3839375 (9. 11. 1972/1. 10. 1974), CA 81: 269145

    Google Scholar 

  54. Weiert WM, Merk W, Offermanns H, Prescher G, Schreyer G, Weiberg O (1975) Chemiker-Ztg 99: 111

    Google Scholar 

  55. Weigert WM, Merk W, Offermanns H, Prescher G, Schreyer G, Weiberg O (1978) In: Weigert WM (ed) Wasserstoff-Peroxid und seine Derivate, Hüthig, Heidelberg, p 73

    Google Scholar 

  56. “Proxitane” and “Proxilate”, Product information of Peroxid Chemie GmbH, Höllriegelskreuth, Germany

    Google Scholar 

  57. Parshall GW (1972) (du Pont), US Pat 3646130 (15. 5. 70/29. 2. 72), CA 76: 154392

    Google Scholar 

  58. Herrmann WA, Marz D, Wagner W, Kuchler JG, Weichselbaumer G, Fischer R, Ger Offen DE 3902357 (27. 1. 89/2. 8. 90), Hoechst AG

    Google Scholar 

  59. Herrman WA, Fischer RW, Marz DW (1991) Angew Chem 103: 1706

    Google Scholar 

  60. Warwel S, Rüsch gen Klaas M, Sojka M, J Chem Soc, Chem Commun 1991: 1578

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang A. Herrmann

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Warwel, S., Sojka, M., Klaas, M.R.g. (1993). Synthesis of dicarboxylic acids by transition-metal catalyzed oxidative cleavage of terminal-unsaturated fatty acids. In: Herrmann, W.A. (eds) Organic Peroxygen Chemistry. Topics in Current Chemistry, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56252-4_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-56252-4_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56252-8

  • Online ISBN: 978-3-540-47494-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics