Skip to main content

Increases in Atmospheric [CO2] and the Soil Food Web

  • Chapter
Managed Ecosystems and CO2

Part of the book series: Ecological Studies ((ECOLSTUD,volume 187))

Conclusions

Organic inputs to soil are comprised largely of plant debris and root exudation, which is responsible for rhizodeposition. Increases in organic matter inputs from plants growing under elevated [CO2] affect soil microorganisms and a limited set of conclusions can be drawn.

  • Bacterial and fungal communities in soil ecosystems use such plant materials as resources to support multiple levels of tiny grazers and predators, which comprise soil food webs.

  • Ten years of elevated [CO2] at the ETH FACE site produced data on soil protozoa and nematodes that are consistent with adjustments predicted for availability of soil bacteria and fungi.

  • Disparate changes in soil microorganisms and complex adjustments in food web structure reported under higher [CO2] in a multitude of other experiments suggest that a better understanding of C resource availability is needed.

  • Increases in living root mass under elevated [CO2] could affect soil food webs through additional exudation, but limited information is available on changes in root exudation under such conditions. We summarize here a new, more complex, understanding of root exudation that includes mechanisms by which microorganisms, and possibly their predators within the food web, can actively enhance root exudation. Initial experiments indicate that higher [CO2] can increase root exudation of amino acids under axenic conditions by two separate mechanisms and these could result in more rhizodeposition.

  • Little is known about how elevated [CO2] levels alter predation, another key connection between the soil food web and the plant, but reductionist studies are beginning to support the concept that specific molecules affect predation and influence many organismic interactions in the root zone.

  • Because the fossil record suggests soil food webs were exposed to widely varied levels of [CO2] for long periods, a certain stability of these interactions should be expected as global atmospheric [CO2] increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball AS, Milne E, Drake BG (2000) Elevated atmospheric-carbon dioxide concentration increases soil respiration in a mid-successional lowland forest. Soil Biol Biochem 32:721–723

    Article  CAS  Google Scholar 

  • Bargmann CI, Mori I (1997) Chemotaxis and thermotaxis. In: Riddle DL, Blumenthal T, Meyer BJ, Preiss JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 717–737

    Google Scholar 

  • Batjes NH (1998) Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Biol Fertil Soils 27:230–235

    Article  CAS  Google Scholar 

  • Bodman S von, Bauer W, Coplin D (2003) Quorum sensing in plant-pathogenic bacteria. Ann Rev Phytopath 41:455–482

    Article  CAS  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709–1715

    Article  CAS  Google Scholar 

  • Bonsall RF, Weller DM, Thomashow LS (1997) Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 63:951–955

    PubMed  CAS  Google Scholar 

  • Brown DH, Ferris H, Fu S, Plant R (2004) Positive feedback in a model food web. Theor Popul Biol 65:143–152

    Article  PubMed  Google Scholar 

  • Bruce KD, Jones TH, Bezemer TM, Thompson LJ, Ritchie DA (2000) The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities. Global Change Biol 6:427–434

    Article  Google Scholar 

  • Brussaard L, Behan-Pelletier VM, Bignell DE, Brown VK, Didden W, Folgarait P, Fragoso C, Freckman DW, Gupta V, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Soderstrom B, Tiedje JM, Virginia RA (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570

    Google Scholar 

  • Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci USA 101:15512–15517

    Article  PubMed  CAS  Google Scholar 

  • Cheng WX, Johnson DW (1998) Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202:167–174

    Article  CAS  Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa, and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187

    Article  CAS  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201

    Article  PubMed  CAS  Google Scholar 

  • Curtis PS, Balduman LM, Drake BG, Whigham DF (1990) Elevated atmospheric CO2 effects on belowground processes in C3 and C4 estuarine marsh communities. Ecology 71:2001–2006

    Article  Google Scholar 

  • Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R, Edwards R (2004) Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochemistry 65:2197–2204

    Article  PubMed  CAS  Google Scholar 

  • De Leij F, Dixon-Hardy JE, Lynch JM (2002) Effect of 2,4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium. Biol Fertil Soils 35:114–121

    Article  CAS  Google Scholar 

  • De Ruiter P, Moore J, Zwart K, Bouwman L, Hassink J, Bloem J, De Vos J, Marinissen J, Didden W, Lebbink G, Brussaard L (1993) Simulation of nitrogen mineralization in the belowground food webs of two winter-wheat fields. J Appl Ecol 30:95–106

    Article  Google Scholar 

  • Delucia EH, Callaway RM, Thomas EM, Schlesinger WH (1997) Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Ann Bot 79:111–120

    Article  CAS  Google Scholar 

  • Fan TW-M, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57:209–221

    Article  PubMed  CAS  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Google Scholar 

  • Ferris H (1982) The role of nematodes as primary consumers. In: Freckman DW (ed) Nematodes in soil ecosystems. University of Texas, Austin, pp 3–13

    Google Scholar 

  • Ferris H, Matute M (2003) Structural and functional succession in the nematode fauna of a soil food web. Appl Soil Ecol 23:93–110

    Article  Google Scholar 

  • Ferris H, Venette RC, Lau SS (1997) Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biol Biochem 29:1183–1194

    Article  CAS  Google Scholar 

  • Gunapala N, Venette RC, Ferris H, Scow KM (1998) Effects of soil management history on the rate of organic matter decomposition. Soil Biol Biochem 30:1917–1927

    Article  CAS  Google Scholar 

  • Hamilton JG, Zangerl AR, Berenbaum MR, Pippen J, Aldea M, DeLucia EH (2004) Insect herbivory in an intact forest understory under experimental CO2 enrichment. Oecologia 138:566–573

    Article  PubMed  Google Scholar 

  • Hawes MC (1990) Living plant cells released from the root cap: A regulator of microbial populations in the rhizosphere? Plant Soil 129:19–27

    Article  Google Scholar 

  • Hoeksema JD, Lussenhop J, Teeri JA (2000) Soil nematodes indicate food web responses to elevated atmospheric CO2. Pedobiologia 44:725–735

    Article  Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Article  Google Scholar 

  • Inubushi K, Cheng WG, Chander K (1999) Carbon dynamics in submerged soil microcosms as influenced by elevated CO2 and temperature. Soil Sci Plant Nutr 45:863–872

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366

    Article  PubMed  CAS  Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth — non-nutritional effects and interaction with mycorrhizae. Biol Fertil Soils 20:263–269

    Article  Google Scholar 

  • Jimenez M, Manez M, Hernandez E (1996) Influence of water activity and temperature on the production of zearalenone in corn by three Fusarium species. Int J Food Microbiol 29:417–421

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea Mays L. and its implications in the rhizosphere. Plant Soil 163:1–12

    CAS  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil-root interface of Zea mays L. And its implications in rhizosphere C flow. Plant Soil 173:103–109

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere III. Characteristics of sugar influx and efflux. Plant Soil 178:153–160

    Article  CAS  Google Scholar 

  • Jones DL, Shannon D, Junvee-Fortune T, Farrar JF (2005) Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem 37:179–181

    Article  CAS  Google Scholar 

  • Jones TH, Thompson LJ, Lawton JH, Bezemer TM, Bardgett RD, Blackburn TM, Bruce KD, Cannon PF, Hall GS, Hartley SE, Howson G, Jones CG, Kampichler C, Kandeler E, Ritchie DA (1998) Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280:441–443

    Article  PubMed  CAS  Google Scholar 

  • Jongen M, Jones MB, Hebeisen T, Blum H, Hendrey G (1995) The effects of elevated CO2 concentrations on the root growth of Lolium perenne and Trifolium repens grown in a face system. Global Change Biol 1:361–371

    Article  Google Scholar 

  • Joseph CM, Phillips DA (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192

    Article  CAS  Google Scholar 

  • Kampichler C, Kandeler E, Bardgett RD, Jones TH, Thompson LJ (1998) Impact of elevated atmospheric CO2 concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem. Global Change Biol 4:335–346

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Kubiske ME, Holmes WE (2001) Correlation of foliage and litter chemistry of sugar maple, Acer Saccharum, as affected by elevated CO2 and varying N availability, and effects on decomposition. Oikos 94:403–416

    Article  Google Scholar 

  • Klingler J (1965) On the orientation of plant nematodes and of some other soil animals. Nematologica 11:14–18

    Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF, Zak DR, Kubiske M, Pregitzer KS (1997) Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Global Change Biol 3:473–478

    Article  Google Scholar 

  • Laakso J, Setälä H (1999) Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87:57–64

    Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184

    Google Scholar 

  • Langley JA, Dijkstra P, Drake BG, Hungate BA (2003) Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO2. Ecosystems 6:424–430

    CAS  Google Scholar 

  • Lee DL (2002) Behaviour. In: Lee DL (ed) The biology of nematodes. Taylor and Francis, London, pp 369–387

    Google Scholar 

  • Luo Y, Su B, Currie W, Dukes J, Finzi A, Hartwig U, Hungate B, McMurtrie R, Oren R, Parton W, Pataki D, Shaw M, Zak D, Field C (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Matamala R, Schlesinger WH (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biol 6:967–979

    Article  Google Scholar 

  • Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Matthysse A, McMahan S (2001) The effect of the Agrobacterium tumefaciens attRmutation on attachment and root colonization differs between legumes and other dicots. Appl Environ Microbiol 67:1070–1075

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Killham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170:345–349

    Article  CAS  Google Scholar 

  • Moens T, Verbeeck L, de Maeyer A, Swings J, Vincx M (1999) Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar Ecol Progr Ser 176:165–178

    Google Scholar 

  • Montealegre CM, Van Kessel C, Blumenthal JM, Hur H-G, Hartwig U, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Global Change Biol 6:475–482

    Article  Google Scholar 

  • Moore JC, Hunt HW (1988) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263

    Article  Google Scholar 

  • Moore JC, Ruiter PC de (1991) Temporal and spatial heterogeneity of trophic interactions within below-ground food webs. Agric Ecosyst Environ 34:371–397

    Article  Google Scholar 

  • Moore JC, McCann K, Setälä H, Ruiter PC de (2003) Top-down is bottom-up: Does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  CAS  Google Scholar 

  • Olsrud M, Melillo JM, Christensen TR, Michelsen A, Wallander H, Olsson PA (2004) Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytol 162:459–469

    Article  Google Scholar 

  • Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33:651–657

    Article  CAS  Google Scholar 

  • Owensby CE, Coyne PI, Ham JM, Auen LM, Knapp AK (1993) Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecol Appl 3:644–653

    Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750

    Article  Google Scholar 

  • Perry RN, Aumann J (1998) Behaviour and sensory responses. In: Perry RN, Wright DJ (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes. CAB International, Wallingford, pp 75–102

    Google Scholar 

  • Phillips DA, Joseph CM, Yang GP, Martínez-Romero E, Sanborn JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci USA 96:12275–12280

    Article  PubMed  CAS  Google Scholar 

  • Phillips DA, Ferris H, Cook DR, Strong DR (2003) Molecular control points in rhizosphere food webs. Ecology 84:816–826

    Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  PubMed  CAS  Google Scholar 

  • Phillips DA, Fox TC, Six J (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated carbon dioxide. Global Change Biol 12:561–567

    Article  Google Scholar 

  • Phillips RL, Zak DR, Holmes WE, White DC (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131:236–244

    Article  Google Scholar 

  • Poinar GO (1983) The natural history of nematodes. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Prot JC (1977) Amplitude et cinétique des migrations du nématode Meloidogyne javanica sous l’influence d’un plant de tomate. Cah ORSTOM Ser Biol 11:157–166

    Google Scholar 

  • Retallack GJ (2001) A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287–290

    Article  PubMed  CAS  Google Scholar 

  • Riddle DL, Bird AF (1985) Responses of the plant parasitic nematodes Rotylenchus reniformis, Anguina argostis and Meloidogyne javanica to chemical attractants. Parasitology 91:185–195

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC, Field CB (2003) Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil 254:383–391

    Article  CAS  Google Scholar 

  • Robinson AF (1995) Optimal release rates for attracting Meloidogyne incognita, Rotylenchulus reniformis, and other nematodes to carbon dioxide in sand. J Nematol 27:42–50

    PubMed  CAS  Google Scholar 

  • Rodger S, Bengough AG, Griffiths BS, Stubbs V, Young IM (2003) Does the presence of detached root border cells of Zea mays alter the activity of the pathogenic nematode Meloidogyne incognita? Phytopathology 93:1111–1114

    PubMed  CAS  Google Scholar 

  • Ronn R, Gavito M, Larsen J, Jakobsen I, Frederiksen H, Christensen S (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem 34:923–932

    Article  CAS  Google Scholar 

  • Ronn R, Ekelund F, Christensen S (2003) Effects of elevated atmospheric CO2 on protozoan abundance in soil planted with wheat and on decomposition of wheat roots. Plant Soil 251:13–21

    Article  CAS  Google Scholar 

  • Rovira AD (1991) Rhizosphere research — 85 years of progress and frustration. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 3–13

    Google Scholar 

  • Ruhm R, Dietsche E, Harloff HJ, Lieb M, Franke S, Aumann J (2003) Characterisation and partial purification of a white mustard kairomone that attracts the beet cyst nematode, Heterodera schachtii. Nematology 5:17–22

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Global Change Biol 3:217–224

    Article  Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469

    Article  PubMed  CAS  Google Scholar 

  • Sowerby A, Blum H, Gray TRG, Ball AS (2000) The decomposition of Lolium perenne in soils exposed to elevated CO2: Comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol Biochem 32:1359–1366

    Article  CAS  Google Scholar 

  • Taraz K, Schaffner EM, Budzikiewicz H, Korth H, Pulverer G (1990) 2,3,9-Trihydoxyphenazin-1-carbonsäure — ein unter Berylliumeinwirkung gebildetes neues Phenazinderivat aus Pseudomonas fluorescens. Z Naturforsch 45b:552–556

    Google Scholar 

  • Tenuta M, Ferris H (2004) Relationship between nematode life-history classification and sensitivity to stressors: ionic and osmotic effects of nitrogenous solutions. J Nematol 36:85–94

    PubMed  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    PubMed  CAS  Google Scholar 

  • Treonis AM, Lussenhop JF (1997) Rapid response of soil protozoa to elevated CO2. Biol Fertil Soils 25:60–62

    Article  CAS  Google Scholar 

  • Treseder KK, Egerton-Warburton LM, Allen MF, Cheng YF, Oechel WC (2003) Alteration of soil carbon pools and communities of mycorrhizal fungi in chaparral exposed to elevated carbon dioxide. Ecosystems 6:786–796

    Article  CAS  Google Scholar 

  • Uselman SM, Qualls RG, Thomas RB (2000) Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant Soil 222:191–202

    Article  CAS  Google Scholar 

  • Van Kessel C, Horwath WR, Hartwig U, Harris D, Lüscher A (2000) Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years. Global Change Biol 6:435–444

    Article  Google Scholar 

  • Venette RC, Ferris H (1998) Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biol Biochem 30:949–960

    Article  CAS  Google Scholar 

  • Viglierchio DR (1961) Attraction of parasitic nematodes by plant root emanations. Phytopathol 51:136–142

    Google Scholar 

  • Wall DW, Moore JC (1999) Interactions underground: soil biodiversity, mutualism and ecosystem processes. BioScience 49:109–117

    Article  Google Scholar 

  • Wardle DA (1999) How soil food webs make plants grow. Trends Ecol Evol 14:418–420

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Putten WH van der, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Wiemken V, Ineichen K, Boller T (2001) Development of ectomycorrhizas in model beech-spruce ecosystems on siliceous and calcareous soil: A 4-year experiment with atmospheric CO2 enrichment and nitrogen fertilization. Plant Soil 234:99–108

    Article  CAS  Google Scholar 

  • Williams LE, DeJong TM, Phillips DA (1981) Carbon and nitrogen limitations on soybean seedling development. Plant Physiol 68:1206–1209

    Article  PubMed  CAS  Google Scholar 

  • Yeates GW, Newton PCD, Ross DJ (2003) Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biol Fertil Soils 38:319–326

    Article  Google Scholar 

  • Young IM, Griffiths BS, Robertson WM, McNicol JW (1998) Nematode (Caenorhabditis elegans) movement in sand as affected by particle size, moisture and the presence of bacteria (Escherichia coli). Eur J Soil Sci 49:237–241

    Article  Google Scholar 

  • Zak DR, Ringelberg DB, Pregitzer KS, Randlett DL, White DC, Curtis PS (1996) Soil microbial communities beneath Populus grandidentata crown under elevated atmospheric CO2. Ecol Appl 6:257–262

    Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: A review and hypothesis. New Phytolog 147:201–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phillips, D.A., Fox, T.C., Ferris, H., Moore, J.C. (2006). Increases in Atmospheric [CO2] and the Soil Food Web. In: Nösberger, J., Long, S.P., Norby, R.J., Stitt, M., Hendrey, G.R., Blum, H. (eds) Managed Ecosystems and CO2 . Ecological Studies, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31237-4_23

Download citation

Publish with us

Policies and ethics