Skip to main content

Functions of Nuclear Polyphosphoinositides

  • Chapter
  • First Online:
Lipid Signaling in Human Diseases

Abstract

Despite interest in phosphoinositide (PtdIns) kinases, such as PtdIns 3 kinases (PI3K), as targets for controlling plasma membrane PtdIns levels in disease, the PtdIns have another less well-known site of action in the cell nucleus.

Recent studies show that PtdIns use a variety of strategies to alter DNA responses. Here, we provide an overview of these newly identified forms of gene expression control, which should be considered when studying the therapeutic use of PtdIns-directed compounds. As PI3K is one of the most important clinical targets in recent years, we will focus on two polyphosphoinositides, the PI3K substrate PtdIns(4,5)di-phosphate (PI4,5P2) and its product PtdIns(3,4,5)tri-phosphate (PI3,4,5P3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn JY, Liu X, Cheng D et al (2005) Nucleophosmin/B23, a nuclear PI (3,4,5)P3 receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell 18:435–445

    CAS  PubMed  Google Scholar 

  • Alva V, Lupas AN (2016) The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochem Biophys Acta 1861:913–923

    CAS  PubMed  Google Scholar 

  • Alvarez B, Martínez-A C, Burgering B et al (2001) Forkhead transcription factors contribute to the execution of the mitotic program in mammals. Nature 413:744–747

    CAS  PubMed  Google Scholar 

  • Angulo I, Vadas O, Garçon F et al (2013) Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342:866–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attree O, Olivos IM, Okabe I et al (1992) The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358:239–242

    CAS  PubMed  Google Scholar 

  • Balla T (2005) Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 118:2093–2104

    CAS  PubMed  Google Scholar 

  • Bidlingmaier S, Liu B (2007) Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins. Mol Cell Proteomics 11:2012–2020

    Google Scholar 

  • Blind RD, Suzawa M, Ingraham HA (2012) Direct modification and activation of a nuclear receptor-PIP2 complex by the inositol lipid kinase IPMK. Sci Signal 5:ra44

    PubMed  PubMed Central  Google Scholar 

  • Blind RD, Sablin EP, Kuchenbecker KM et al (2014) The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1. Proc Natl Acad Sci U S A 111:15054–15059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolino A, Muglia M, Conforti FL et al (2000) Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 25:17–19

    CAS  PubMed  Google Scholar 

  • Boronenkov IV, Loijens JC, Umeda M et al (1998) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 9:3547–3560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentier S, N’Kuli F, Grieco G et al (2013) Class III phosphoinositide 3-kinase/VPS34 and dynamin are critical for apical endocytic recycling. Traffic 14:933–948

    CAS  PubMed  Google Scholar 

  • Catimel B, Yin MX, Schieber C et al (2009) PI(3,4,5)P3 interactome. J Proteome Res 8:3712–3726

    CAS  PubMed  Google Scholar 

  • Chen ZH, Zhu M, Yang J et al (2014) PTEN interacts with histone H1 and controls chromatin condensation. Cell Rep 8:2003–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu YH, Lee JY, Cantley LC (2014) BRD7, a tumor suppressor, interacts with p85α and regulates PI3K activity. Mol Cell 54:193–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cocco L, Martelli AM, Gilmour RS et al (1988) Rapid changes in phospholipid metabolism in the nuclei of Swiss 3T3 cells induced by treatment of the cells with insulin-like growth factor I. Biochem Biophys Res Commun 154:1266–1272

    CAS  PubMed  Google Scholar 

  • D’Angelo G, Vicinanza M, De Matteis MA (2008) Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 20:360–370

    PubMed  Google Scholar 

  • Devereaux K, Dall’Armi C, Alcazar-Roman A et al (2013) Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS One 8:e76405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    PubMed  Google Scholar 

  • Dornan GL, Siempelkamp BD, Jenkins ML et al (2017) Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Proc Natl Acad Sci U S A 118:1982–1987

    Google Scholar 

  • Endo A, Kitamura N, Komada M (2009) Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36. J Biol Chem 284:27918–27923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falasca M, Maffucci T (2012) Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443:587–601

    CAS  PubMed  Google Scholar 

  • Fayngerts SA, Wu J, Oxley CL et al (2014) TIPE3 is the transfer protein of lipid second messengers that promote cancer. Cancer Cell 26:465–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fruman DA, Chiu H, Hopkins BD et al (2017) The PI3K pathway in human disease. Cell 170:605–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego O, Betts MJ, Gvozdenovic-Jeremic J et al (2010) A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 6:430

    CAS  PubMed  PubMed Central  Google Scholar 

  • García Z, Kumar A, Marqués M et al (2006) PI3K controls early and late events in mammalian cell division. EMBO J 25:655–661

    PubMed  PubMed Central  Google Scholar 

  • Gelato KA, Tauber M, Ong MS et al (2014) Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 54:905–919

    CAS  PubMed  Google Scholar 

  • Goldsmith JR, Chen YH (2017) Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins. Cell Mol Immunol 14:482–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grisendi S, Mecucci C, Falini B et al (2006) Nucleophosmin and cancer. Nat Rev Cancer 6:493–505

    CAS  PubMed  Google Scholar 

  • Hamann BL, Blind RD (2018) Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 233:107–123

    CAS  PubMed  Google Scholar 

  • Hempel WM, Cavanaugh AH, Hannan RD et al (1996) The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor. Mol Cell Biol 16:557–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DR, Bultsma Y, Keune WJ et al (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell 23:685–695

    CAS  PubMed  Google Scholar 

  • Jungmichel S, Sylvestersen KB, Choudhary C et al (2014) Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep 6:578–591

    CAS  PubMed  Google Scholar 

  • Kandoth C, McLellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ (1998) Insulin rapidly induces nuclear translocation of PI3-kinase in HepG2 cells. Biochem Mol Biol Int 46:187–196

    CAS  PubMed  Google Scholar 

  • Krylova IN, Sablin EP, Moore J et al (2005) Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120:343–355

    CAS  PubMed  Google Scholar 

  • Kumar A, Fernadez-Capetillo O, Carrera AC (2010) Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci U S A 107:7491–7496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Redondo-Muñoz J, Perez-García V et al (2011) Nuclear but not cytosolic phosphoinositide 3-kinase beta plays an essential function in cell survival. Mol Cell Biol 31:2122–2133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurek KC, Luks VL, Ayturk UM et al (2012) Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 90:1108–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laporte J, Hu LJ, Kretz C et al (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182

    CAS  PubMed  Google Scholar 

  • Lees JA, Messa M, Sun EW et al (2017) Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science 355(6326):eaah6171

    PubMed  PubMed Central  Google Scholar 

  • Lete MG, Sot J, Ahyayauch H et al (2014) Histones and DNA compete for binding polyphosphoinositides in bilayers. Biophys J 106:1092–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614

    CAS  PubMed  Google Scholar 

  • Lindsay Y, McCoull D, Davidson L et al (2006) Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci 119:5160–5168

    CAS  PubMed  Google Scholar 

  • Liu P, Cheng H, Roberts TM et al (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PJ, Hsu AL, Wang DS et al (1998) Phosphoinositide 3-kinase in rat liver nuclei. Biochemistry 37:5738–5745

    CAS  PubMed  Google Scholar 

  • Maraldi NM, Capitani S, Caramelli E et al (1984) Conformational changes of nuclear chromatin related to phospholipid induced modifications of the template availability. Adv Enzym Regul 22:447–464

    CAS  Google Scholar 

  • Marqués M, Kumar A, Poveda AM et al (2009) Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc Natl Acad Sci U S A 106:7525–7530

    PubMed  PubMed Central  Google Scholar 

  • Martelli AM, Manzoli L, Cocco L (2004) Nuclear inositides: facts and perspectives. Pharmacol Ther 101:47–64

    CAS  PubMed  Google Scholar 

  • Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489

    CAS  PubMed  Google Scholar 

  • Mellman DL, Gonzales ML, Song C et al (2008) A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451:1013–1017

    CAS  PubMed  Google Scholar 

  • Monserrate JP, York JD (2010) Inositol phosphate synthesis and the nuclear processes they affect. Curr Opin Cell Biol 22:365–373

    CAS  PubMed  Google Scholar 

  • Neri LM, Martelli AM, Borgatti P et al (1999) Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKC-f translocation to the nucleus of NGF-treated PC12 cells. FASEB J 13:2299–2310

    CAS  PubMed  Google Scholar 

  • Nicot AS, Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9:1240–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nile AH, Bankaitis VA, Grabon A (2010) Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. Clin Lipidol 5:867–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada M, Jang SW, Ye K (2008) Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci U S A 105:8649–8654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang J, Yang YW, Huang Y et al (2017) p110β inhibition reduces histone H3K4 Di-methylation in prostate cancer. Prostate 77:299–308

    CAS  PubMed  Google Scholar 

  • Poli A, Billi AM, Mongiorgi S et al (2016) Nuclear phosphatidylinositol signaling: focus on phosphatidylinositol phosphate kinases and phospholipases C. J Cell Physiol 231:1645–1655

    CAS  PubMed  Google Scholar 

  • Quaresma AJ, Sievert R, Nickerson JA (2013) Regulation of mRNA export by the PI3 kinase/AKT signal transduction pathway. Mol Biol Cell 24:1208–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rando OJ, Zhao K, Janmey P et al (2002) Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc Natl Acad Sci U S A 99:2824–2829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo-Muñoz J, Pérez-García V, Carrera AC (2014) Phosphoinositide 3-kinase beta: when a kinase is more than a kinase. Trends Cell Mol Biol 8:83–92

    Google Scholar 

  • Redondo-Muñoz J, Pérez-García V, Rodríguez MJ et al (2015) Phosphoinositide 3-kinase beta protects nuclear envelope integrity by controlling RCC1 localization and ran activity. Mol Cell Biol 35:249–263

    PubMed  Google Scholar 

  • Resnick AC, Snowman AM, Kang B et al (2005) Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc Natl Acad Sci U S A 102:12783–12788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland MM, Bostic HE, Gong D et al (2011) Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners. Biochemistry 50:11143–11161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sablin EP, Blind RD, Krylova IN et al (2009) Structure of SF-1 bound by different phospholipids: evidence for regulatory ligands. Mol Endocrinol 23:25–34

    CAS  PubMed  Google Scholar 

  • Shah ZH, Jones DR, Sommer L et al (2013) Nuclear phosphoinositides and their impact on nuclear functions. FEBS J 280:6295–6310

    CAS  PubMed  Google Scholar 

  • Silió V, Redondo-Muñoz J, Carrera AC (2012) Phosphoinositide 3-kinase beta regulates chromosome segregation in mitosis. Mol Biol Cell 23:4526–4542

    PubMed  PubMed Central  Google Scholar 

  • Smith KP, Moen PT, Wydner KL et al (1999) Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J Cell Biol 144:617–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spangle JM, Dreijerink KM, Groner AC et al (2016) PI3K/AKT signaling regulates H3K4 methylation in breast cancer. Cell Rep 15:2692–2704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stijf-Bultsma Y, Sommer L, Tauber M et al (2015) The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol Cell 58:453–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stopkova P, Saito T, Papolos DF et al (2004) Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Biol Psychiatry 55:981–988

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M et al (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341

    CAS  PubMed  Google Scholar 

  • Ye K, Hurt KJ, Wu FY et al (2000) Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 103:919–930

    CAS  PubMed  Google Scholar 

  • Yildirim S, Castano E, Sobol M et al (2013) Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci 126:2730–2739

    CAS  PubMed  Google Scholar 

  • Yu H, Fukami K, Watanabe Y et al (1998) Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur J Biochem 251:281–287

    CAS  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Bangham R et al (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    CAS  Google Scholar 

  • Zini N, Ognibene A, Bavelloni A et al (1996) Cytoplasmic and nuclear localization sites of phosphatidylinositol 3-kinase in human osteosarcoma sensitive and multidrug-resistant Saos-2 cells. Histochem Cell Biol 106:457–464

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Carrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olazabal-Morán, M., González-García, A., Carrera, A.C. (2019). Functions of Nuclear Polyphosphoinositides. In: Gomez-Cambronero, J., Frohman, M. (eds) Lipid Signaling in Human Diseases. Handbook of Experimental Pharmacology, vol 259. Springer, Cham. https://doi.org/10.1007/164_2019_219

Download citation

Publish with us

Policies and ethics