Skip to main content

Mechanisms of Resistance to Targeted Therapies in Chronic Myeloid Leukemia

  • Chapter
  • First Online:
Book cover Mechanisms of Drug Resistance in Cancer Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 249))

Abstract

Patients with newly diagnosed chronic myeloid leukemia (CML) usually received as first-line treatment a first- or second-generation tyrosine kinase inhibitor (TKI). Although initial responses are high, therapy fails in up to 40% of patients and initial response is lost within 2 years in approximately 25% of patients. In the last few years, intensive efforts have been spent to explain treatment failure, and different mechanisms of resistance have been identified, ranging from BCR-ABL1 kinase domain mutations to lack of adherence to therapy. In this review, we briefly summarize the clinical efficacy of approved TKIs and describe the main mechanisms of TKI resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M et al (2009) Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci U S A 106(10):3925–3929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal A, Eide CA, Harlow A, Corbin AS, Mauro MJ, Druker BJ, Corless CL, Heinrich MC, Deininger MW (2008) An activating KRAS mutation in imatinib-resistant chronic myeloid leukemia. Leukemia 22(12):2269–2272

    CAS  PubMed  Google Scholar 

  • Angelini S, Soverini S, Ravegnini G, Barnett M, Turrini E, Thornquist M, Pane F, Hughes TP, White DL, Radich J et al (2013) Association between imatinib transporters and metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia patients receiving imatinib therapy. Haematologica 98(2):193–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, Cervantes F, Clark RE, Cortes JE, Guilhot F et al (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122(6):872–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bower H, Bjorkholm M, Dickman PW, Hoglund M, Lambert PC, Andersson TM (2016) Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol 34(24):2851–2857

    CAS  PubMed  Google Scholar 

  • Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, Taylor K, Herrmann R, Seymour JF, Arthur C et al (2003) Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102(1):276–283

    CAS  PubMed  Google Scholar 

  • Branford S, Melo JV, Hughes TP (2009) Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood 114(27):5426–5435

    CAS  PubMed  Google Scholar 

  • Brummendorf TH, Cortes JE, de Souza CA, Guilhot F, Duvillie L, Pavlov D, Gogat K, Countouriotis AM, Gambacorti-Passerini C (2015) Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol 168(1):69–81

    PubMed  Google Scholar 

  • Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S, Ottmann OG, Duyster J, Hochhaus A, Neubauer A (2005) Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 19(10):1774–1782

    CAS  PubMed  Google Scholar 

  • Carella AM, Garuti A, Cirmena G, Catania G, Rocco I, Palermo C, Pica G, Pierri I, Miglino M, Ballestrero A et al (2010) Kinase domain mutations of BCR-ABL identified at diagnosis before imatinib-based therapy are associated with progression in patients with high Sokal risk chronic phase chronic myeloid leukemia. Leuk Lymphoma 51(2):275–278

    CAS  PubMed  Google Scholar 

  • Chen Y, Hu Y, Michaels S, Segal D, Brown D, Li S (2009) Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice. Leukemia 23(8):1446–1454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chomel JC, Turhan AG (2011) Chronic myeloid leukemia stem cells in the era of targeted therapies: resistance, persistence and long-term dormancy. Oncotarget 2(9):713–727

    PubMed  PubMed Central  Google Scholar 

  • Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25(4):231–259

    CAS  PubMed  Google Scholar 

  • Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, Barow M, Mountford JC, Holyoake TL (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107(11):4532–4539

    CAS  PubMed  Google Scholar 

  • Cortes JE, Kantarjian HM, Brummendorf TH, Kim DW, Turkina AG, Shen ZX, Pasquini R, Khoury HJ, Arkin S, Volkert A et al (2011) Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood 118(17):4567–4576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes JE, Kim DW, Kantarjian HM, Brummendorf TH, Dyagil I, Griskevicius L, Malhotra H, Powell C, Gogat K, Countouriotis AM et al (2012a) Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol 30(28):3486–3492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O’Hare T, Hu S, Narasimhan NI, Rivera VM et al (2012b) Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 367(22):2075–2088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes J, Lipton JH, Rea D, Digumarti R, Chuah C, Nanda N, Benichou AC, Craig AR, Michallet M, Nicolini FE et al (2012c) Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation. Blood 120(13):2573–2580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M et al (2013) A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369(19):1783–1796

    CAS  PubMed  Google Scholar 

  • Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, Shah NP, Chuah C, Casanova L, Bradley-Garelik B et al (2016) Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol 34(20):2333–2340

    CAS  PubMed  PubMed Central  Google Scholar 

  • le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E, Supino R, Gambacorti-Passerini C (2000) Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 95(5):1758–1766

    PubMed  Google Scholar 

  • Crossman LC, Druker BJ, Deininger MW, Pirmohamed M, Wang L, Clark RE (2005) hOCT 1 and resistance to imatinib. Blood 106(3):1133–1134. Author reply 1134

    CAS  PubMed  Google Scholar 

  • Deenik W, van der Holt B, Janssen JJ, Chu IW, Valk PJ, Ossenkoppele GJ, van der Heiden IP, Sonneveld P, van Schaik RH, Cornelissen JJ (2010) Polymorphisms in the multidrug resistance gene MDR1 (ABCB1) predict for molecular resistance in patients with newly diagnosed chronic myeloid leukemia receiving high-dose imatinib. Blood 116(26):6144–6145. Author reply 6145–6146

    CAS  PubMed  Google Scholar 

  • Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, Talpaz M (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101(2):690–698

    CAS  PubMed  Google Scholar 

  • Druker BJ, Lydon NB (2000) Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 105(1):3–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eechoute K, Sparreboom A, Burger H, Franke RM, Schiavon G, Verweij J, Loos WJ, Wiemer EA, Mathijssen RH (2011) Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res 17(3):406–415

    CAS  PubMed  Google Scholar 

  • Ernst T, La Rosee P, Muller MC, Hochhaus A (2011) BCR-ABL mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am 25(5):997–1008. v-vi

    PubMed  Google Scholar 

  • Galimberti S, Cervetti G, Guerrini F, Testi R, Pacini S, Fazzi R, Simi P, Petrini M (2005) Quantitative molecular monitoring of BCR-ABL and MDR1 transcripts in patients with chronic myeloid leukemia during imatinib treatment. Cancer Genet Cytogenet 162(1):57–62

    CAS  PubMed  Google Scholar 

  • Gambacorti-Passerini C, Antolini L, Mahon FX, Guilhot F, Deininger M, Fava C, Nagler A, Della Casa CM, Morra E, Abruzzese E et al (2011) Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst 103(7):553–561

    CAS  PubMed  Google Scholar 

  • Giannoudis A, Wang L, Jorgensen AL, Xinarianos G, Davies A, Pushpakom S, Liloglou T, Zhang JE, Austin G, Holyoake TL et al (2013) The hOCT1 SNPs M420del and M408V alter imatinib uptake and M420del modifies clinical outcome in imatinib-treated chronic myeloid leukemia. Blood 121(4):628–637

    CAS  PubMed  Google Scholar 

  • Gioia R, Leroy C, Drullion C, Lagarde V, Etienne G, Dulucq S, Lippert E, Roche S, Mahon FX, Pasquet JM (2011) Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood 118(8):2211–2221

    CAS  PubMed  Google Scholar 

  • Goldman JM (2012) Ponatinib for chronic myeloid leukemia. N Engl J Med 367(22):2148–2149

    CAS  PubMed  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293(5531):876–880

    CAS  Google Scholar 

  • Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99(1):319–325

    CAS  PubMed  Google Scholar 

  • Hantschel O, Rix U, Superti-Furga G (2008) Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk Lymphoma 49(4):615–619

    CAS  PubMed  Google Scholar 

  • Hegedus T, Orfi L, Seprodi A, Varadi A, Sarkadi B, Keri G (2002) Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 1587(2–3):318–325

    CAS  PubMed  Google Scholar 

  • Hochhaus A (2003) Cytogenetic and molecular mechanisms of resistance to imatinib. Semin Hematol 40(Supplement 2):69–79

    CAS  PubMed  Google Scholar 

  • Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U et al (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16(11):2190–2196

    CAS  PubMed  Google Scholar 

  • Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, Goldman JM, Muller MC, Radich JP, Rudoltz M et al (2009) Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23(6):1054–1061

    CAS  PubMed  Google Scholar 

  • Hochhaus A, Saglio G, Larson RA, Kim DW, Etienne G, Rosti G, De Souza C, Kurokawa M, Kalaycio ME, Hoenekopp A et al (2013) Nilotinib is associated with a reduced incidence of BCR-ABL mutations vs imatinib in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Blood 121(18):3703–3708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S et al (2017) Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med 376(10):917–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoy SM (2014) Ponatinib: a review of its use in adults with chronic myeloid leukaemia or Philadelphia chromosome-positive acute lymphoblastic leukaemia. Drugs 74(7):793–806

    CAS  PubMed  Google Scholar 

  • Ibrahim AR, Eliasson L, Apperley JF, Milojkovic D, Bua M, Szydlo R, Mahon FX, Kozlowski K, Paliompeis C, Foroni L et al (2011) Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood 117(14):3733–3736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal Z, Aleem A, Iqbal M, Naqvi MI, Gill A, Taj AS, Qayyum A, ur-Rehman N, Khalid AM, Shah IH et al (2013) Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era. PLoS One 8(2):e55717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iurlo A, Ubertis A, Artuso S, Bucelli C, Radice T, Zappa M, Cattaneo D, Mari D, Cortelezzi A (2014) Comorbidities and polypharmacy impact on complete cytogenetic response in chronic myeloid leukaemia elderly patients. Eur J Intern Med 25(1):63–66

    PubMed  Google Scholar 

  • Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O’Brien S, Zhou X, Luthra R, Garcia-Manero G, Giles F et al (2006) Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia 20(10):1767–1773

    CAS  PubMed  Google Scholar 

  • Jabbour E, Kantarjian H, Jones D, Breeden M, Garcia-Manero G, O’Brien S, Ravandi F, Borthakur G, Cortes J (2008) Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood 112(1):53–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, Moiraghi B, Shen Z, Mayer J, Pasquini R et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362(24):2260–2270

    CAS  PubMed  Google Scholar 

  • Kantarjian HM, Hochhaus A, Saglio G, De Souza C, Flinn IW, Stenke L, Goh YT, Rosti G, Nakamae H, Gallagher NJ et al (2011) Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol 12(9):841–851

    CAS  PubMed  Google Scholar 

  • Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, Undurraga MS, Wang J, Ipina JJ, Kim DW, Ogura M et al (2012) Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 119(5):1123–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khorashad JS, de Lavallade H, Apperley JF, Milojkovic D, Reid AG, Bua M, Szydlo R, Olavarria E, Kaeda J, Goldman JM et al (2008) Finding of kinase domain mutations in patients with chronic phase chronic myeloid leukemia responding to imatinib may identify those at high risk of disease progression. J Clin Oncol 26(29):4806–4813

    CAS  PubMed  Google Scholar 

  • Koren-Michowitz M, Buzaglo Z, Ribakovsky E, Schwarz M, Pessach I, Shimoni A, Beider K, Amariglio N, le Coutre P, Nagler A (2014) OCT1 genetic variants are associated with long term outcomes in imatinib treated chronic myeloid leukemia patients. Eur J Haematol 92(4):283–288

    CAS  PubMed  Google Scholar 

  • Lahaye T, Riehm B, Berger U, Paschka P, Muller MC, Kreil S, Merx K, Schwindel U, Schoch C, Hehlmann R et al (2005) Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer 103(8):1659–1669

    PubMed  Google Scholar 

  • Larson RA, Hochhaus A, Hughes TP, Clark RE, Etienne G, Kim DW, Flinn IW, Kurokawa M, Moiraghi B, Yu R et al (2012) Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia 26(10):2197–2203

    CAS  PubMed  Google Scholar 

  • Larson RA, Kim D-W, Jootar S, Pasquini R, Clark RE, Lobo C, Goldberg SL, Shibayama H, Hochhaus A, Saglio G et al (2014) ENESTnd 5-year (y) update: long-term outcomes of patients (pts) with chronic myeloid leukemia in chronic phase (CML-CP) treated with frontline nilotinib (NIL) versus imatinib (IM). J Clin Oncol 32(15_suppl):7073–7073

    Google Scholar 

  • Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2(7):358–364

    CAS  PubMed  Google Scholar 

  • Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247(4946):1079–1082

    CAS  PubMed  Google Scholar 

  • Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, Goldman JM, Melo JV (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101(6):2368–2373

    CAS  PubMed  Google Scholar 

  • Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, Legros L, Charbonnier A, Guerci A, Varet B et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre stop imatinib (STIM) trial. Lancet Oncol 11(11):1029–1035

    CAS  PubMed  Google Scholar 

  • Marin D, Ibrahim AR, Lucas C, Gerrard G, Wang L, Szydlo RM, Clark RE, Apperley JF, Milojkovic D, Bua M et al (2012) Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol 30(3):232–238

    CAS  PubMed  Google Scholar 

  • Mauro MJ (2013) Overcoming resistance in chronic myelogenous leukemia. Am Soc Clin Oncol Educ Book 306–312

    Google Scholar 

  • Milojkovic D, Apperley J (2009) Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res 15(24):7519–7527

    CAS  PubMed  Google Scholar 

  • Neelakantan P, Gerrard G, Lucas C, Milojkovic D, May P, Wang L, Paliompeis C, Bua M, Reid A, Rezvani K et al (2013) Combining BCR-ABL1 transcript levels at 3 and 6 months in chronic myeloid leukemia: implications for early intervention strategies. Blood 121(14):2739–2742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni LN, Li JY, Miao KR, Qiao C, Zhang SJ, Qiu HR, Qian SX (2011) Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med Oncol 28(1):265–269

    CAS  PubMed  Google Scholar 

  • Nicolini FE, Corm S, Le QH, Sorel N, Hayette S, Bories D, Leguay T, Roy L, Giraudier S, Tulliez M et al (2006) Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia 20(6):1061–1066

    CAS  PubMed  Google Scholar 

  • Noens L, Hensen M, Kucmin-Bemelmans I, Lofgren C, Gilloteau I, Vrijens B (2014) Measurement of adherence to BCR-ABL inhibitor therapy in chronic myeloid leukemia: current situation and future challenges. Haematologica 99(3):437–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004

    PubMed  Google Scholar 

  • O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MW et al (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65(11):4500–4505

    PubMed  Google Scholar 

  • O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou T, Huang WS, Xu Q et al (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16(5):401–412

    PubMed  PubMed Central  Google Scholar 

  • O’Hare T, Zabriskie MS, Eiring AM, Deininger MW (2012) Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer 12(8):513–526

    PubMed  Google Scholar 

  • Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44(9):879–894

    CAS  PubMed  Google Scholar 

  • Peng XX, Tiwari AK, Wu HC, Chen ZS (2012) Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells. Chin J Cancer 31(2):110–118

    PubMed  PubMed Central  Google Scholar 

  • Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T, Fenaux P, Preudhomme C (2002) Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100(3):1014–1018

    CAS  PubMed  Google Scholar 

  • Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, Dang P, Goyne JM, Slader C, Filshie RJ et al (2013) Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 122(4):515–522

    CAS  PubMed  Google Scholar 

  • Rosti G, Palandri F, Castagnetti F, Breccia M, Levato L, Gugliotta G, Capucci A, Cedrone M, Fava C, Intermesoli T et al (2009) Nilotinib for the frontline treatment of Ph(+) chronic myeloid leukemia. Blood 114(24):4933–4938

    CAS  PubMed  Google Scholar 

  • Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293

    CAS  PubMed  Google Scholar 

  • Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, Pasquini R, Clark RE, Hochhaus A, Hughes TP et al (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362(24):2251–2259

    CAS  PubMed  Google Scholar 

  • Shah NP (2007) Medical management of CML. Hematology Am Soc Hematol Educ Program 371–375

    Google Scholar 

  • Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315(6020):550–554

    CAS  PubMed  Google Scholar 

  • Shukla S, Skoumbourdis AP, Walsh MJ, Hartz AM, Fung KL, Wu CP, Gottesman MM, Bauer B, Thomas CJ, Ambudkar SV (2011) Synthesis and characterization of a BODIPY conjugate of the BCR-ABL kinase inhibitor Tasigna (nilotinib): evidence for transport of Tasigna and its fluorescent derivative by ABC drug transporters. Mol Pharm 8(4):1292–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soverini S, Martinelli G, Rosti G, Bassi S, Amabile M, Poerio A, Giannini B, Trabacchi E, Castagnetti F, Testoni N et al (2005) ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA working party on chronic myeloid leukemia. J Clin Oncol 23(18):4100–4109

    CAS  PubMed  Google Scholar 

  • Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F, Poerio A, Iacobucci I, Amabile M, Abruzzese E, Orlandi E et al (2006) Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA working party on chronic myeloid leukemia. Clin Cancer Res 12(24):7374–7379

    CAS  PubMed  Google Scholar 

  • Soverini S, Gnani A, Colarossi S, Castagnetti F, Abruzzese E, Paolini S, Merante S, Orlandi E, de Matteis S, Gozzini A et al (2009) Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood 114(10):2168–2171

    CAS  PubMed  Google Scholar 

  • Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, Pane F, Muller MC, Ernst T, Rosti G et al (2011) BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 118(5):1208–1215

    CAS  PubMed  Google Scholar 

  • Tang C, Schafranek L, Watkins DB, Parker WT, Moore S, Prime JA, White DL, Hughes TP (2011) Tyrosine kinase inhibitor resistance in chronic myeloid leukemia cell lines: investigating resistance pathways. Leuk Lymphoma 52(11):2139–2147

    CAS  PubMed  Google Scholar 

  • Vine J, Cohen SB, Ruchlemer R, Goldschmidt N, Levin M, Libster D, Gural A, Gatt ME, Lavie D, Ben-Yehuda D et al (2014) Polymorphisms in the human organic cation transporter and the multidrug resistance gene: correlation with imatinib levels and clinical course in patients with chronic myeloid leukemia. Leuk Lymphoma 55(11):2525–2531

    CAS  PubMed  Google Scholar 

  • Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW, Hochhaus A, Neubauer A, Burchert A (2007) Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 109(5):2147–2155

    CAS  PubMed  Google Scholar 

  • Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7(2):129–141

    CAS  PubMed  Google Scholar 

  • White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S, Zannettino A, Lynch K, Manley PW, Hughes T (2007) Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 110(12):4064–4072

    CAS  PubMed  Google Scholar 

  • White DL, Dang P, Engler J, Frede A, Zrim S, Osborn M, Saunders VA, Manley PW, Hughes TP (2010a) Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J Clin Oncol 28(16):2761–2767

    CAS  PubMed  Google Scholar 

  • White DL, Saunders VA, Dang P, Engler J, Hughes TP (2010b) OCT-1 activity measurement provides a superior imatinib response predictor than screening for single-nucleotide polymorphisms of OCT-1. Leukemia 24(11):1962–1965

    CAS  PubMed  Google Scholar 

  • Widmer N, Colombo S, Buclin T, Decosterd LA (2003) Functional consequence of MDR1 expression on imatinib intracellular concentrations. Blood 102(3):1142

    CAS  PubMed  Google Scholar 

  • Willis SG, Lange T, Demehri S, Otto S, Crossman L, Niederwieser D, Stoffregen EP, McWeeney S, Kovacs I, Park B et al (2005) High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood 106(6):2128–2137

    CAS  PubMed  Google Scholar 

  • Zhang H, Li S (2013) Molecular mechanisms for survival regulation of chronic myeloid leukemia stem cells. Protein Cell 4(3):186–196

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Intermesoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lussana, F., Intermesoli, T., Stefanoni, P., Rambaldi, A. (2018). Mechanisms of Resistance to Targeted Therapies in Chronic Myeloid Leukemia. In: Mandalà, M., Romano, E. (eds) Mechanisms of Drug Resistance in Cancer Therapy. Handbook of Experimental Pharmacology, vol 249. Springer, Cham. https://doi.org/10.1007/164_2017_81

Download citation

Publish with us

Policies and ethics