Skip to main content

Immune-Mediated and Hypoxia-Regulated Programs: Accomplices in Resistance to Anti-angiogenic Therapies

  • Chapter
  • First Online:
Mechanisms of Drug Resistance in Cancer Therapy

Abstract

In contrast to mechanisms taking place during resistance to chemotherapies or other targeted therapies, compensatory adaptation to angiogenesis blockade does not imply a mutational alteration of genes encoding drug targets or multidrug resistance mechanisms but instead involves intrinsic or acquired activation of compensatory angiogenic pathways. In this article we highlight hypoxia-regulated and immune-mediated mechanisms that converge in endothelial cell programs and preserve angiogenesis in settings of vascular endothelial growth factor (VEGF) blockade. These mechanisms involve mobilization of myeloid cell populations and activation of cytokine- and chemokine-driven circuits operating during intrinsic and acquired resistance to anti-angiogenic therapies. Particularly, we focus on findings underscoring a role for galectins and glycosylated ligands in promoting resistance to anti-VEGF therapies and discuss possible strategies to overcome or attenuate this compensatory pathway. Finally, we highlight emerging evidence demonstrating the interplay between immunosuppressive and pro-angiogenic programs in the tumor microenvironment (TME) and discuss emerging combinatorial anticancer strategies aimed at simultaneously potentiating antitumor immune responses and counteracting aberrant angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arrondeau J, Huillard O, Tlemsani C, Cessot A, Boudou-Rouquette P, Blanchet B, Thomas-Schoemann A, Vidal M, Tigaud JM, Durand JP, Alexandre J, Goldwasser F (2015) Investigational therapies up to phase II which target PDGF receptors: potential anti-cancer therapeutics. Expert Opin Investig Drugs 24(5):673–687. doi:10.1517/13543784.2015.1005736

    Article  CAS  PubMed  Google Scholar 

  • Barbi J, Pardoll D, Pan F (2013) Metabolic control of the Treg/Th17 axis. Immunol Rev 252(1):52–77. doi:10.1111/imr.12029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95. doi:10.1016/j.ccr.2006.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603. doi:10.1038/nrc2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84. doi:10.1016/j.scr.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  • Bose A, Barik S, Banerjee S, Ghosh T, Mallick A, Bhattacharyya Majumdar S, Goswami KK, Bhuniya A, Banerjee S, Baral R, Storkus WJ, Dasgupta PS, Majumdar S (2013) Tumor-derived vascular pericytes anergize Th cells. J Immunol 191(2):971–981. doi:10.4049/jimmunol.1300280

    Article  CAS  PubMed  Google Scholar 

  • Bourbie-Vaudaine S, Blanchard N, Hivroz C, Romeo PH (2006) Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. J Immunol 177(3):1460–1469

    Article  CAS  PubMed  Google Scholar 

  • Brecht K, Weigert A, Hu J, Popp R, Fisslthaler B, Korff T, Fleming I, Geisslinger G, Brune B (2011) Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. FASEB J 25(7):2408–2417. doi:10.1096/fj.10-179473

    Article  CAS  PubMed  Google Scholar 

  • Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N, Cantelmo AR, Franzi F, Capella C, Ferlazzo G, Mortara L, Albini A, Noonan DM (2013) The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 15(2):133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE (2002) Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 196(2):204–212. doi:10.1002/path.1029

    Article  CAS  PubMed  Google Scholar 

  • Carbone C, Tamburrino A, Piro G, Boschi F, Cataldo I, Zanotto M, Mina MM, Zanini S, Sbarbati A, Scarpa A, Tortora G, Melisi D (2016) Combined inhibition of IL1, CXCR1/2, and TGFbeta signaling pathways modulates in-vivo resistance to anti-VEGF treatment. Anti-Cancer Drugs 27(1):29–40. doi:10.1097/CAD.0000000000000301

    Article  CAS  PubMed  Google Scholar 

  • Carlini MJ, Roitman P, Nunez M, Pallotta MG, Boggio G, Smith D, Salatino M, Joffe ED, Rabinovich GA, Puricelli LI (2014) Clinical relevance of galectin-1 expression in non-small cell lung cancer patients. Lung Cancer 84(1):73–78. doi:10.1016/j.lungcan.2014.01.016

    Article  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. doi:10.1038/35025220

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309. doi:10.1016/j.ccr.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  • Cerliani JP, Blidner AG, Toscano MA, Croci DO, Rabinovich GA (2016) Translating the ‘sugar code’ into immune and vascular signaling programs. Trends Biochem Sci. doi:10.1016/j.tibs.2016.11.003

    Article  PubMed  Google Scholar 

  • Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ (2009) Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15(6):527–538. doi:10.1016/j.ccr.2009.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler KB, Leon DR, Meyer RD, Rahimi N, Costello CE (2017) Site-specific N-glycosylation of endothelial cell receptor tyrosine kinase VEGFR-2. J Proteome Res 16(2):677–688. doi:10.1021/acs.jproteome.6b00738

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Duckworth CA, Fu B, Pritchard DM, Rhodes JM, Yu LG (2014) Circulating galectins-2, -4 and -8 in cancer patients make important contributions to the increased circulation of several cytokines and chemokines that promote angiogenesis and metastasis. Br J Cancer 110(3):741–752. doi:10.1038/bjc.2013.793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WS, Cao Z, Sugaya S, Lopez MJ, Sendra VG, Laver N, Leffler H, Nilsson UJ, Fu J, Song J, Xia L, Hamrah P, Panjwani N (2016) Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun 7:11302. doi:10.1038/ncomms11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouaib S, Messai Y, Couve S, Escudier B, Hasmim M, Noman MZ (2012) Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol 3:21. doi:10.3389/fimmu.2012.00021

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV, Ouyang W, Ferrara N (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19(9):1114–1123. doi:10.1038/nm.3291

    Article  CAS  PubMed  Google Scholar 

  • Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563. doi:10.1038/nature13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21(1):66–81. doi:10.1016/j.ccr.2011.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207(11):2439–2453. doi:10.1084/jem.20100587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117):286–291. doi:10.1126/science.1232227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ, Ouyang J, Ilarregui JM, Toscano MA, Domaica CI, Croci MC, Shipp MA, Mesri EA, Albini A, Rabinovich GA (2012) Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 209(11):1985–2000. doi:10.1084/jem.20111665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croci DO, Cerliani JP, Dalotto-Moreno T, Mendez-Huergo SP, Mascanfroni ID, Dergan-Dylon S, Toscano MA, Caramelo JJ, Garcia-Vallejo JJ, Ouyang J, Mesri EA, Junttila MR, Bais C, Shipp MA, Salatino M, Rabinovich GA (2014a) Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156(4):744–758. doi:10.1016/j.cell.2014.01.043

    Article  CAS  PubMed  Google Scholar 

  • Croci DO, Cerliani JP, Pinto NA, Morosi LG, Rabinovich GA (2014b) Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment. Glycobiology 24(12):1283–1290. doi:10.1093/glycob/cwu083

    Article  CAS  PubMed  Google Scholar 

  • Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M, Wei S, Zou L, Kryczek I, Hoyle G, Lackner A, Carmeliet P, Zou W (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64(16):5535–5538. doi:10.1158/0008-5472.CAN-04-1272

    Article  CAS  PubMed  Google Scholar 

  • D’Alessio FR, Zhong Q, Jenkins J, Moldobaeva A, Wagner EM (2015) Lung angiogenesis requires CD4(+) forkhead homeobox protein-3(+) regulatory T cells. Am J Respir Cell Mol Biol 52(5):603–610. doi:10.1165/rcmb.2014-0278OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M, Decaestecker C, Baum L, Salmon I (2013) VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLoS One 8(6):e67029. doi:10.1371/journal.pone.0067029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784. doi:10.1016/j.cell.2011.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226. doi:10.1016/j.ccr.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  • Delgado VM, Nugnes LG, Colombo LL, Troncoso MF, Fernandez MM, Malchiodi EL, Frahm I, Croci DO, Compagno D, Rabinovich GA, Wolfenstein-Todel C, Elola MT (2011) Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8. FASEB J 25(1):242–254. doi:10.1096/fj.09-144907

    Article  CAS  PubMed  Google Scholar 

  • Deng B, Zhu JM, Wang Y, Liu TT, Ding YB, Xiao WM, Lu GT, Bo P, Shen XZ (2013) Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF-beta1 in gastric cancer. PLoS One 8(5):e63777. doi:10.1371/journal.pone.0063777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, Nadaf S, Carbone DP (2005) Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 174(1):215–222

    Article  CAS  PubMed  Google Scholar 

  • Dings RP, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH, Griffin RJ (2007) Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 13(11):3395–3402. doi:10.1158/1078-0432.CCR-06-2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbelstein M, Moll U (2014) Targeting tumour-supportive cellular machineries in anticancer drug development. Nat Rev Drug Discov 13(3):179–196. doi:10.1038/nrd4201

    Article  CAS  PubMed  Google Scholar 

  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239. doi:10.1016/j.ccr.2009.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis LM, Hicklin DJ (2008) Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clin Cancer Res 14(20):6371–6375. doi:10.1158/1078-0432.CCR-07-5287

    Article  CAS  PubMed  Google Scholar 

  • Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230. doi:10.1038/nature10169

    Article  CAS  PubMed  Google Scholar 

  • Fagiani E, Bill R, Pisarsky L, Ivanek R, Ruegg C, Christofori G (2015) An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models. Angiogenesis 18(3):327–345. doi:10.1007/s10456-015-9470-9

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Adamis AP (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 15(6):385–403. doi:10.1038/nrd.2015.17

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333(2):328–335. doi:10.1016/j.bbrc.2005.05.132

    Article  CAS  PubMed  Google Scholar 

  • Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol 11(7):856–861. doi:10.1016/j.intimp.2011.01.030

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475. doi:10.1016/j.cell.2007.08.038

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. doi:10.1056/NEJM197111182852108

    Article  CAS  PubMed  Google Scholar 

  • Forget MA, Voorhees JL, Cole SL, Dakhlallah D, Patterson IL, Gross AC, Moldovan L, Mo X, Evans R, Marsh CB, Eubank TD (2014) Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS One 9(6):e98623. doi:10.1371/journal.pone.0098623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K, Peoples GE, Klagsbrun M (1995) Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res 55(18):4140–4145

    CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166

    CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5(10):2963–2970

    CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber K (2014) Promising early results for immunotherapy-antiangiogenesis combination. J Natl Cancer Inst 106(11):dju392. doi:10.1093/jnci/dju392

    Article  PubMed  Google Scholar 

  • Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109(5):2058–2065. doi:10.1182/blood-2006-04-016451

    Article  CAS  PubMed  Google Scholar 

  • Gasparri ML, Bellati F, Napoletano C, Panici PB, Nuti M (2013) Interaction between Treg cells and angiogenesis: a dark double track. Int J Cancer 132(10):2469. doi:10.1002/ijc.27920

    Article  CAS  PubMed  Google Scholar 

  • Ge XN, Ha SG, Greenberg YG, Rao A, Bastan I, Blidner AG, Rao SP, Rabinovich GA, Sriramarao P (2016) Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1. Proc Natl Acad Sci U S A 113(33):E4837–E4846. doi:10.1073/pnas.1601958113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giatromanolaki A, Bates GJ, Koukourakis MI, Sivridis E, Gatter KC, Harris AL, Banham AH (2008) The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer. Gynecol Oncol 110(2):216–221. doi:10.1016/j.ygyno.2008.04.021

    Article  CAS  PubMed  Google Scholar 

  • Gotthardt D, Putz EM, Grundschober E, Prchal-Murphy M, Straka E, Kudweis P, Heller G, Bago-Horvath Z, Witalisz-Siepracka A, Cumaraswamy AA, Gunning PT, Strobl B, Muller M, Moriggl R, Stockmann C, Sexl V (2016) STAT5 Is a key regulator in NK cells and acts as a molecular switch from tumor surveillance to tumor promotion. Cancer Discov 6(4):414–429. doi:10.1158/2159-8290.CD-15-0732

    Article  CAS  PubMed  Google Scholar 

  • Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189. doi:10.1016/j.cell.2005.10.036

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Joshi K, Wig JD, Arora SK (2007) Intratumoral FOXP3 expression in infiltrating breast carcinoma: its association with clinicopathologic parameters and angiogenesis. Acta Oncol 46(6):792–797. doi:10.1080/02841860701233443

    Article  CAS  PubMed  Google Scholar 

  • Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH, Rabie T, Kaden S, Grone HJ, Hammerling GJ, Arnold B, Ganss R (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453(7193):410–414. doi:10.1038/nature06868

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. doi:10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  • Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12(9):1065–1074. doi:10.1038/nm1452

    Article  CAS  PubMed  Google Scholar 

  • Hansen W, Hutzler M, Abel S, Alter C, Stockmann C, Kliche S, Albert J, Sparwasser T, Sakaguchi S, Westendorf AM, Schadendorf D, Buer J, Helfrich I (2012) Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med 209(11):2001–2016. doi:10.1084/jem.20111497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN (2010) Hypoxia inducible factors in cancer stem cells. Br J Cancer 102(5):789–795. doi:10.1038/sj.bjc.6605551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heusschen R, Schulkens IA, van Beijnum J, Griffioen AW, Thijssen VL (2014) Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis. Biochim Biophys Acta 1842(2):284–292. doi:10.1016/j.bbadis.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, Zeng W, Giobbie-Hurder A, Atkins MB, Ibrahim N, Friedlander P, Flaherty KT, Murphy GF, Rodig S, Velazquez EF, Mihm MC Jr, Russell S, DiPiro PJ, Yap JT, Ramaiya N, Van den Abbeele AD, Gargano M, McDermott D (2014) Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2(7):632–642. doi:10.1158/2326-6066.CIR-14-0053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99(17):11393–11398. doi:10.1073/pnas.172398299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh SH, Ying NW, Wu MH, Chiang WF, Hsu CL, Wong TY, Jin YT, Hong TM, Chen YL (2008) Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27(26):3746–3753. doi:10.1038/sj.onc.1211029

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, Leblanc P, Munn LL, Huang P, Duda DG, Fukumura D, Jain RK, Poznansky MC (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A 109(43):17561–17566. doi:10.1073/pnas.1215397109

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Goel S, Duda DG, Fukumura D, Jain RK (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 73(10):2943–2948. doi:10.1158/0008-5472.CAN-12-4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes PE, Caenepeel S, Wu LC (2016) Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol 37(7):462–476. doi:10.1016/j.it.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  • Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vermeulen ME, Geffner JR, Rabinovich GA (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10(9):981–991. doi:10.1038/ni.1772

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. doi:10.1126/science.1104819

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622. doi:10.1016/j.ccell.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong W, Doroshow JH, Kummar S (2013) United States Food and Drug Administration approved oral kinase inhibitors for the treatment of malignancies. Curr Probl Cancer 37(3):110–144. doi:10.1016/j.currproblcancer.2013.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17(1):109–118. doi:10.1007/s10456-013-9381-6

    Article  CAS  PubMed  Google Scholar 

  • Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, Xiang L, Samanta D, Lee MH, Wu PH, Wirtz D, Semenza GL, Gilkes DM (2017) Hypoxia selectively enhances integrin receptor expression to promote metastasis. Mol Cancer Res. doi:10.1158/1541-7786.MCR-16-0338

    Article  PubMed  PubMed Central  Google Scholar 

  • Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354. doi:10.1038/nature12626

    Article  CAS  PubMed  Google Scholar 

  • Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, Chen W, Kutok JL, Rabinovich GA, Shipp MA (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 104(32):13134–13139. doi:10.1073/pnas.0706017104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kale S, Hanai J, Chan B, Karihaloo A, Grotendorst G, Cantley L, Sukhatme VP (2005) Microarray analysis of in vitro pericyte differentiation reveals an angiogenic program of gene expression. FASEB J 19(2):270–271. doi:10.1096/fj.04-1604fje

    Article  CAS  PubMed  Google Scholar 

  • Keith B, Johnson RS, Simon MC (2011) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9–22. doi:10.1038/nrc3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li J, Pollard JW (2015) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212(7):1043–1059. doi:10.1084/jem.20141836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ (1983) Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221(4617):1283–1285

    Article  CAS  PubMed  Google Scholar 

  • Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E (2015) Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 3(4):412–423. doi:10.1158/2326-6066.CIR-14-0150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupitskaya Y, Wakelee HA (2009) Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs 10(6):597–605

    CAS  PubMed  Google Scholar 

  • Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118(10):3367–3377. doi:10.1172/JCI35213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laderach DJ, Gentilini LD, Giribaldi L, Delgado VC, Nugnes L, Croci DO, Al Nakouzi N, Sacca P, Casas G, Mazza O, Shipp MA, Vazquez E, Chauchereau A, Kutok JL, Rodig SJ, Elola MT, Compagno D, Rabinovich GA (2013) A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease. Cancer Res 73(1):86–96. doi:10.1158/0008-5472.CAN-12-1260

    Article  CAS  PubMed  Google Scholar 

  • LaGory EL, Giaccia AJ (2016) The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol 18(4):356–365. doi:10.1038/ncb3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134. doi:10.1016/j.cell.2007.01.049

    Article  CAS  PubMed  Google Scholar 

  • Le QT, Shi G, Cao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, O’Byrne KJ, Giaccia AJ, Koong AC (2005) Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 23(35):8932–8941. doi:10.1200/JCO.2005.02.0206

    Article  CAS  PubMed  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309

    Article  CAS  PubMed  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612. doi:10.1158/0008-5472.CAN-05-4005

    Article  CAS  PubMed  Google Scholar 

  • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246. doi:10.1158/0008-5472.CAN-06-1278

    Article  CAS  PubMed  Google Scholar 

  • Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5(1):29–41. doi:10.1038/nrc1527

    Article  CAS  PubMed  Google Scholar 

  • Liu XD, Hoang A, Zhou L, Kalra S, Yetil A, Sun M, Ding Z, Zhang X, Bai S, German P, Tamboli P, Rao P, Karam JA, Wood C, Matin S, Zurita A, Bex A, Griffioen AW, Gao J, Sharma P, Tannir N, Sircar K, Jonasch E (2015) Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma. Cancer Immunol Res 3(9):1017–1029. doi:10.1158/2326-6066.CIR-14-0244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15(3):167–170. doi:10.1016/j.ccr.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  • Lukashev D, Klebanov B, Kojima H, Grinberg A, Ohta A, Berenfeld L, Wenger RH, Ohta A, Sitkovsky M (2006) Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 177(8):4962–4965

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Song L, Chen XL, Zeng XF, Wu JZ, Zhu CR, Huang T, Tan XP, Lin XM, Yang Q, Wang JZ, Li XK, Wu XP (2016) Identification of galectin-1 as a novel mediator for chemoresistance in chronic myeloid leukemia cells. Oncotarget 7(18):26709–26723. doi:10.18632/oncotarget.8489

    Article  PubMed  PubMed Central  Google Scholar 

  • Lykken JM, Horikawa M, Minard-Colin V, Kamata M, Miyagaki T, Poe JC, Tedder TF (2016) Galectin-1 drives lymphoma CD20 immunotherapy resistance: validation of a preclinical system to identify resistance mechanisms. Blood 127(15):1886–1895. doi:10.1182/blood-2015-11-681130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado CM, Andrade LN, Teixeira VR, Costa FF, Melo CM, dos Santos SN, Nonogaki S, Liu FT, Bernardes ES, Camargo AA, Chammas R (2014) Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFbeta1-induced macrophages. Cancer Med 3(2):201–214. doi:10.1002/cam4.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, Goncalves A, Andre P, Romagne F, Thibault G, Viens P, Birnbaum D, Bertucci F, Moretta A, Olive D (2011) Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 121(9):3609–3622. doi:10.1172/JCI45816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manegold C, Dingemans AC, Gray JE, Nakagawa K, Nicolson M, Peters S, Reck M, Wu YL, Brustugun OT, Crino L, Felip E, Fennell D, Garrido P, Huber RM, Marabelle A, Moniuszko M, Mornex F, Novello S, Papotti M, Perol M, Smit EF, Syrigos K, van Meerbeeck JP, van Zandwijk N, Chih-Hsin Yang J, Zhou C, Vokes E (2017) The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J Thorac Oncol 12(2):194–207. doi:10.1016/j.jtho.2016.10.003

    Article  PubMed  Google Scholar 

  • Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. doi:10.1038/nrclinonc.2016.217

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzi M, Bacigalupo ML, Carabias P, Elola MT, Wolfenstein-Todel C, Rabinovich GA, Espelt MV, Troncoso MF (2016) Galectin-1 controls the proliferation and migration of liver sinusoidal endothelial cells and their interaction with hepatocarcinoma cells. J Cell Physiol 231(7):1522–1533. doi:10.1002/jcp.25244

    Article  CAS  PubMed  Google Scholar 

  • Markowska AI, Liu FT, Panjwani N (2010) Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 207(9):1981–1993. doi:10.1084/jem.20090121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markowska AI, Jefferies KC, Panjwani N (2011) Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem 286(34):29913–29921. doi:10.1074/jbc.M111.226423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marone G, Varricchi G, Loffredo S, Granata F (2016) Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. Eur J Pharmacol 778:146–151. doi:10.1016/j.ejphar.2015.03.088

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Bosch N, Fernandez-Barrena MG, Moreno M, Ortiz-Zapater E, Munne-Collado J, Iglesias M, Andre S, Gabius HJ, Hwang RF, Poirier F, Navas C, Guerra C, Fernandez-Zapico ME, Navarro P (2014) Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Res 74(13):3512–3524. doi:10.1158/0008-5472.CAN-13-3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu V, de Lassalle EM, Toelen J, Mohr T, Bellahcene A, Van Goietsenoven G, Verschuere T, Bouzin C, Debyser Z, De Vleeschouwer S, Van Gool S, Poirier F, Castronovo V, Kiss R, Feron O (2012) Galectin-1 in melanoma biology and related neo-angiogenesis processes. J Invest Dermatol 132(9):2245–2254. doi:10.1038/jid.2012.142

    Article  CAS  PubMed  Google Scholar 

  • Melero I, Berman DM, Aznar MA, Korman AJ, Perez Gracia JL, Haanen J (2015) Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 15(8):457–472. doi:10.1038/nrc3973

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Huergo SP, Blidner AG, Rabinovich GA (2017) Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr Opin Immunol 45:8–15. doi:10.1016/j.coi.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  • Mimura K, Kono K, Takahashi A, Kawaguchi Y, Fujii H (2007) Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2. Cancer Immunol Immunother 56(6):761–770. doi:10.1007/s00262-006-0234-7

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, Zimmer MA, Iliopoulos O, Zukerberg LR, Kohgo Y, Lynch MP, Rueda BR, Chung DC (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11(9):992–997. doi:10.1038/nm1294

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motz GT, Coukos G (2011) The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11(10):702–711. doi:10.1038/nri3064

    Article  CAS  PubMed  Google Scholar 

  • Motz GT, Coukos G (2013) Deciphering and reversing tumor immune suppression. Immunity 39(1):61–73. doi:10.1016/j.immuni.2013.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234. doi:10.1182/blood-2004-03-1109

    Article  CAS  PubMed  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631. doi:10.1038/nrc2444

    Article  CAS  PubMed  Google Scholar 

  • Myszczyszyn A, Czarnecka AM, Matak D, Szymanski L, Lian F, Kornakiewicz A, Bartnik E, Kukwa W, Kieda C, Szczylik C (2015) The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev 11(6):919–943. doi:10.1007/s12015-015-9611-y

    Article  CAS  PubMed Central  Google Scholar 

  • Nabi IR, Shankar J, Dennis JW (2015) The galectin lattice at a glance. J Cell Sci 128(13):2213–2219. doi:10.1242/jcs.151159

    Article  CAS  PubMed  Google Scholar 

  • Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A (2000) Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156(3):899–909. doi:10.1016/S0002-9440(10)64959-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790. doi:10.1084/jem.20131916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. doi:10.1016/j.immuni.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57(8):1115–1124. doi:10.1007/s00262-007-0441-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231. doi:10.1016/j.ccr.2009.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan F, Barbi J, Pardoll DM (2012) Hypoxia-inducible factor 1: a link between metabolism and T cell differentiation and a potential therapeutic target. Oncoimmunology 1(4):510–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology 14(11):1379–1392. doi:10.1093/neuonc/nos158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccolo E, Tinari N, Semeraro D, Traini S, Fichera I, Cumashi A, La Sorda R, Spinella F, Bagnato A, Lattanzio R, D’Egidio M, Di Risio A, Stampolidis P, Piantelli M, Natoli C, Ullrich A, Iacobelli S (2013) LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis. J Mol Med (Berlin) 91(1):83–94. doi:10.1007/s00109-012-0936-6

    Article  CAS  Google Scholar 

  • Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P, Andre P, Dieu-Nosjean MC, Alifano M, Regnard JF, Fridman WH, Sautes-Fridman C, Cremer I (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71(16):5412–5422. doi:10.1158/0008-5472.CAN-10-4179

    Article  CAS  PubMed  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. doi:10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  • Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML, Wu L (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115(7):1461–1471. doi:10.1182/blood-2009-08-237412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. doi:10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich GA, Conejo-Garcia JR (2016) Shaping the immune landscape in cancer by galectin-driven regulatory pathways. J Mol Biol 428(16):3266–3281. doi:10.1016/j.jmb.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Croci DO (2012) Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 36(3):322–335. doi:10.1016/j.immuni.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich G, Castagna L, Landa C, Riera CM, Sotomayor C (1996) Regulated expression of a 16-kd galectin-like protein in activated rat macrophages. J Leukoc Biol 59(3):363–370

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296. doi:10.1146/annurev.immunol.25.022106.141609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A, Angin M, Wakeham A, Greenfield EA, Sobel RA, Okada H, McKinnon PJ, Mak TW, Addo MM, Anderson AC, Kuchroo VK (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18(9):1394–1400. doi:10.1038/nm.2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Akerud P, De Mol M, Salomaki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19(1):31–44. doi:10.1016/j.ccr.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, Mordoh J, Fainboim L, Podhajcer OL, Rabinovich GA (2004) Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell 5(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A, Brencicova E, Escovar-Fadul X, Nguyen JM, Cadungog MG, Zhang R, Salatino M, Tchou J, Rabinovich GA, Conejo-Garcia JR (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27(1):27–40. doi:10.1016/j.ccell.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nieminen J (2004) Seeing strangers or announcing “danger”: galectin-3 in two models of innate immunity. Glycoconj J 19(7–9):583–591. doi:10.1023/B:GLYC.0000014089.17121.cc

    Article  Google Scholar 

  • Semenza GL (2017) Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J 36(3):252–259. doi:10.15252/embj.201695204

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723. doi:10.1016/j.cell.2017.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shehade H, Acolty V, Moser M, Oldenhove G (2015) Cutting edge: hypoxia-inducible factor 1 negatively regulates Th1 function. J Immunol 195(4):1372–1376. doi:10.4049/jimmunol.1402552

    Article  CAS  PubMed  Google Scholar 

  • Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208(7):1367–1376. doi:10.1084/jem.20110278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007a) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25(8):911–920. doi:10.1038/nbt1323

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007b) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831. doi:10.1038/nature06348

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Singh M, Thompson JD, Ferrara N (2008) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A 105(7):2640–2645. doi:10.1073/pnas.0712185105

    Article  PubMed  PubMed Central  Google Scholar 

  • Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 106(16):6742–6747. doi:10.1073/pnas.0902280106

    Article  PubMed  PubMed Central  Google Scholar 

  • Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, Feng J, Stewart AE, Hu-Lowe DD, Christensen JG (2010) HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70(24):10090–10100. doi:10.1158/0008-5472.CAN-10-0489

    Article  CAS  PubMed  Google Scholar 

  • Shrestha B, Hashiguchi T, Ito T, Miura N, Takenouchi K, Oyama Y, Kawahara K, Tancharoen S, Ki IY, Arimura N, Yoshinaga N, Noma S, Shrestha C, Nitanda T, Kitajima S, Arimura K, Sato M, Sakamoto T, Maruyama I (2010) B cell-derived vascular endothelial growth factor A promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes. J Immunol 184(9):4819–4826. doi:10.4049/jimmunol.0903063

    Article  CAS  PubMed  Google Scholar 

  • Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123(2):97–102. doi:10.1016/j.imlet.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  • Song N, Huang Y, Shi H, Yuan S, Ding Y, Song X, Fu Y, Luo Y (2009) Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1alpha/CXCR4 axis. Cancer Res 69(15):6057–6064. doi:10.1158/0008-5472.CAN-08-2007

    Article  CAS  PubMed  Google Scholar 

  • Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13(10):1211–1218. doi:10.1038/nm1649

    Article  CAS  PubMed  Google Scholar 

  • Sozzani S, Rusnati M, Riboldi E, Mitola S, Presta M (2007) Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol 28(9):385–392. doi:10.1016/j.it.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  • Stockmann C, Schadendorf D, Klose R, Helfrich I (2014) The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol 4:69. doi:10.3389/fonc.2014.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan C, Cruet-Hennequart S, Troussard A, Fazli L, Costello P, Sutton K, Wheeler J, Gleave M, Sanghera J, Dedhar S (2004) Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell 5(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, Wang J, Li B, Yin W, Wang D (2016) Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol 37(2):1889–1899. doi:10.1007/s13277-015-3942-9

    Article  CAS  PubMed  Google Scholar 

  • von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629. doi:10.1016/j.yexcr.2005.10.019

    Article  CAS  Google Scholar 

  • Tesone AJ, Rutkowski MR, Brencicova E, Svoronos N, Perales-Puchalt A, Stephen TL, Allegrezza MJ, Payne KK, Nguyen JM, Wickramasinghe J, Tchou J, Borowsky ME, Rabinovich GA, Kossenkov AV, Conejo-Garcia JR (2016) Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells. Cell Rep 14(7):1774–1786. doi:10.1016/j.celrep.2016.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiemann S, Baum LG (2016) Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol 34:243–264. doi:10.1146/annurev-immunol-041015-055402

    Article  CAS  PubMed  Google Scholar 

  • Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, Verhofstad N, Nakabeppu Y, Baum LG, Bakkers J, Mayo KH, Poirier F, Griffioen AW (2006) Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A 103(43):15975–15980. doi:10.1073/pnas.0603883103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, Hackeng TM, Kiss R, Kloog Y, Poirier F, Griffioen AW (2010) Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res 70(15):6216–6224. doi:10.1158/0008-5472.CAN-09-4150

    Article  CAS  PubMed  Google Scholar 

  • Thijssen VL, Rabinovich GA, Griffioen AW (2013) Vascular galectins: regulators of tumor progression and targets for cancer therapy. Cytokine Growth Factor Rev 24(6):547–558. doi:10.1016/j.cytogfr.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  • Triner D, Shah YM (2016) Hypoxia-inducible factors: a central link between inflammation and cancer. J Clin Invest 126(10):3689–3698. doi:10.1172/JCI84430

    Article  PubMed  PubMed Central  Google Scholar 

  • Verschuere T, Toelen J, Maes W, Poirier F, Boon L, Tousseyn T, Mathivet T, Gerhardt H, Mathieu V, Kiss R, Lefranc F, Van Gool SW, De Vleeschouwer S (2014) Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 134(4):873–884. doi:10.1002/ijc.28426

    Article  CAS  PubMed  Google Scholar 

  • Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, Stockmann C, Combe P, Berger A, Zinzindohoue F, Yagita H, Tartour E, Taieb J, Terme M (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212(2):139–148. doi:10.1084/jem.20140559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, Denker M, Leveque V, Canamero M, Babitski G, Koeppen H, Ziai J, Sharma N, Gaire F, Chen DS, Waterkamp D, Hegde PS, McDermott DF (2016) Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun 7:12624. doi:10.1038/ncomms12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Lv P, Gu Y, Li L, Ge X, Guo G (2017) Galectin-1 knockdown improves drug sensitivity of breast cancer by reducing P-glycoprotein expression through inhibiting the Raf-1/AP-1 signaling pathway. Oncotarget. doi:10.18632/oncotarget.15341

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, Melillo G, Priebe W, Heimberger AB (2011) Hypoxia potentiates glioma-mediated immunosuppression. PLoS One 6(1):e16195. doi:10.1371/journal.pone.0016195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405. doi:10.1038/nn.2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Giobbie-Hurder A, Liao X, Lawrence D, McDermott D, Zhou J, Rodig S, Hodi FS (2016) VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma. Cancer Immunol Res 4(10):858–868. doi:10.1158/2326-6066.CIR-16-0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421. doi:10.1016/j.ccr.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Ma C, Liu S, Shao Q, Gao W, Song B, Sun J, Xie Q, Zhang Y, Feng A, Liu Y, Hu W, Qu X (2010) HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 88(2):165–171. doi:10.1038/icb.2009.77

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Lee H, Pal S, Jove V, Deng J, Zhang W, Hoon DS, Wakabayashi M, Forman S, Yu H (2013) B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One 8(5):e64159. doi:10.1371/journal.pone.0064159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda S, Sho M, Yamato I, Yoshiji H, Wakatsuki K, Nishiwada S, Yagita H, Nakajima Y (2013) Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin Exp Immunol 172(3):500–506. doi:10.1111/cei.12069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XY, Chen TT, Xia L, Guo M, Xu Y, Yue F, Jiang Y, Chen GQ, Zhao KW (2010) Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 31(8):1367–1375. doi:10.1093/carcin/bgq116

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252. doi:10.1038/ni1271

    Article  CAS  PubMed  Google Scholar 

  • Zucchetti M, Bonezzi K, Frapolli R, Sala F, Borsotti P, Zangarini M, Cvitkovic E, Noel K, Ubezio P, Giavazzi R, D’Incalci M, Taraboletti G (2013) Pharmacokinetics and antineoplastic activity of galectin-1-targeting OTX008 in combination with sunitinib. Cancer Chemother Pharmacol 72(4):879–887. doi:10.1007/s00280-013-2270-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in G.A.R’s lab is supported by grants from the Argentinean Agency for Promotion of Science and Technology (PICT V 2014-367; PICT 2012-2440), CONICET, University of Buenos Aires, Bunge & Born Foundation and Sales Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego O. Croci or Gabriel A. Rabinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Croci, D.O., Mendez-Huergo, S.P., Cerliani, J.P., Rabinovich, G.A. (2017). Immune-Mediated and Hypoxia-Regulated Programs: Accomplices in Resistance to Anti-angiogenic Therapies. In: Mandalà, M., Romano, E. (eds) Mechanisms of Drug Resistance in Cancer Therapy. Handbook of Experimental Pharmacology, vol 249. Springer, Cham. https://doi.org/10.1007/164_2017_29

Download citation

Publish with us

Policies and ethics