Skip to main content

Mechanisms of Resistance to Targeted Therapies in Chronic Lymphocytic Leukemia

  • Chapter
  • First Online:
Mechanisms of Drug Resistance in Cancer Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 249))

Abstract

Even if treatment options for Chronic Lymphocytic Leukemia (CLL) patients have changed dramatically in the past few years, with the approval of targeted therapeutic agents, the disease remains incurable. Beside intrinsic genetic features characterizing the leukemic cell, signals coming from the microenvironment have a key role in promoting cell survival and in protecting CLL cells from the action of drugs. Consequently, the identification of previously unrecognized genetic lesions is important in risk-stratification of CLL patients and is progressively becoming a critical tool for choosing the best therapeutic strategy. Significant efforts have also been dedicated to define microenvironment-dependent mechanisms that sustain leukemic cells favoring survival, proliferation, and accumulation of additional genetic lesions. Furthermore, understanding the molecular and biological mechanisms, potentially driving disease progression and chemoresistance, is the first step to design therapies that could be effective in high-risk patients. Significant progress has been made in the identification of the different mechanisms through which patients relapse after “new” and “old” therapies. These studies have led to the development of targeted strategies to overcome, or even prevent, resistance through the design of novel agents or their combination.

In this chapter we will give an overview of the main therapeutic options for CLL patients and review the mechanisms of resistance responsible for treatment failure. Potential strategies to overcome or prevent resistance will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn IE, Underbayev C, Albitar A, Herman SE, Tian X, Maric I, Arthur DC, Wake L, Pittaluga S, Yuan CM et al (2017) Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood [Epub ahead of print]. doi:10.1182/blood-2016-06-719294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arruga F, Gizdic B, Bologna C, Cignetto S, Buonincontri R, Serra S, Vaisitti T, Gizzi K, Vitale N, Garaffo G et al (2016) Mutations in NOTCH1 PEST-domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia [Epub ahead of print]. doi:10.1038/leu.2016.383

    PubMed  Google Scholar 

  • Arruga F, Gizdic B, Serra S, Vaisitti T, Ciardullo C, Coscia M, Laurenti L, D’Arena G, Jaksic O, Inghirami G et al (2014) Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia 28:1060–1070

    CAS  PubMed  Google Scholar 

  • Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, Coscia M, Maffei R, Rossi D, Wang T et al (2015) Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood 125:111–123

    CAS  PubMed  Google Scholar 

  • Audrito V, Vaisitti T, Serra S, Bologna C, Brusa D, Malavasi F, Deaglio S (2013) Targeting the microenvironment in chronic lymphocytic leukemia offers novel therapeutic options. Cancer Lett 328:27–35

    CAS  PubMed  Google Scholar 

  • Aydin S, Rossi D, Bergui L, D’Arena G, Ferrero E, Bonello L, Omede P, Novero D, Morabito F, Carbone A et al (2008) CD38 gene polymorphism and chronic lymphocytic leukemia: a role in transformation to Richter syndrome? Blood 111:5646–5653

    CAS  PubMed  Google Scholar 

  • Bagnara D, Kaufman MS, Calissano C, Marsilio S, Patten PE, Simone R, Chum P, Yan XJ, Allen SL, Kolitz JE et al (2011) A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 117:5463–5472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N, Larrayoz M, Kminkova J, Agathangelidis A, Davis Z et al (2015) Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 29:329–336

    CAS  PubMed  Google Scholar 

  • Barrientos JC (2016) Sequencing of chronic lymphocytic leukemia therapies. Hematology Am Soc Hematol Educ Program 2016:128–136

    PubMed  PubMed Central  Google Scholar 

  • Baumann T, Delgado J, Santacruz R, Martinez-Trillos A, Royo C, Navarro A, Pinyol M, Rozman M, Pereira A, Villamor N et al (2014) Chronic lymphocytic leukemia in the elderly: clinico-biological features, outcomes, and proposal of a prognostic model. Haematologica 99:1599–1604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, Vaugier G, Potron G, Colona P, Oberling F et al (1981) A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 48:198–206

    CAS  PubMed  Google Scholar 

  • Brown JR (2016) The PI3K pathway: clinical inhibition in chronic lymphocytic leukemia. Semin Oncol 43:260–264

    CAS  PubMed  Google Scholar 

  • Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, Jaksic O, Fedele G, Inghirami G, Gaidano G et al (2013) The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 98:953–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buhler A, Wendtner CM, Kipps TJ, Rassenti L, Fraser GA, Michallet AS, Hillmen P, Durig J, Gregory SA, Kalaycio M et al (2016) Lenalidomide treatment and prognostic markers in relapsed or refractory chronic lymphocytic leukemia: data from the prospective, multicenter phase-II CLL-009 trial. Blood Cancer J 6:e404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burger JA (2010) Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting. Semin Cancer Biol 20:424–430

    CAS  PubMed  Google Scholar 

  • Burger JA, Chiorazzi N (2013) B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 34:592–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, Wang L, Stewart C, Fan J, Hoellenriegel J et al (2016) Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun 7:11589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burger JA, Quiroga MP, Hartmann E, Burkle A, Wierda WG, Keating MJ, Rosenwald A (2009) High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113:3050–3058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, Bairey O, Hillmen P, Bartlett NL, Li J et al (2015) Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 373:2425–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd JC, Furman RR, Coutre SE, Burger JA, Blum KA, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA et al (2015) Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood 125:2497–2506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369:32–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, Chaves J, Wierda WG, Awan FT, Brown JR et al (2016) Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med 374:323–332

    CAS  PubMed  Google Scholar 

  • Campregher PV, Hamerschlak N (2014) Novel prognostic gene mutations identified in chronic lymphocytic leukemia and their impact on clinical practice. Clin Lymphoma Myeloma Leuk 14:271–276

    PubMed  Google Scholar 

  • Cassaday RD, Storer BE, Sorror ML, Sandmaier BM, Guthrie KA, Maloney DG, Rajendran JG, Pagel JM, Flowers ME, Green DJ et al (2015) Long-term outcomes of patients with persistent indolent B cell malignancies undergoing nonmyeloablative allogeneic transplantation. Biol Blood Marrow Transplant 21:281–287

    PubMed  Google Scholar 

  • Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG (2013) Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev 27:1059–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Guo A, Lu P, Ma J, Coleman M, Wang YL (2015) Functional characterization of BTK(C481S) mutation that confers ibrutinib resistance: exploration of alternative kinase inhibitors. Leukemia 29:895–900

    CAS  PubMed  Google Scholar 

  • Cheson BD, Byrd JC, Rai KR, Kay NE, O’Brien SM, Flinn IW, Wiestner A, Kipps TJ (2012) Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol 30:2820–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MY, Kashyap MK, Kumar D (2016) The chronic lymphocytic leukemia microenvironment: beyond the B-cell receptor. Best Pract Res Clin Haematol 29:40–53

    PubMed  Google Scholar 

  • Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF (1989) Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 71:343–350

    CAS  PubMed  Google Scholar 

  • Cooperative Group for the Study of Immunoglobulin in Chronic Lymphocytic Leukemia (1988) Intravenous immunoglobulin for the prevention of infection in chronic lymphocytic leukemia. A randomized, controlled clinical trial. N Engl J Med 319:902

    Google Scholar 

  • Cramer P, Hallek M (2011) Prognostic factors in chronic lymphocytic leukemia-what do we need to know? Nat Rev Clin Oncol 8:38–47

    CAS  PubMed  Google Scholar 

  • Cui B, Ghia EM, Chen L, Rassenti LZ, DeBoever C, Widhopf GF 2nd, Yu J, Neuberg DS, Wierda WG, Rai KR et al (2016) High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood 128:2931–2940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J et al (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–1847

    CAS  PubMed  Google Scholar 

  • Dighiero G, Hamblin TJ (2008) Chronic lymphocytic leukaemia. Lancet 371:1017–1029

    CAS  PubMed  Google Scholar 

  • Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910–1916

    CAS  PubMed  Google Scholar 

  • Dreger P, Schnaiter A, Zenz T, Bottcher S, Rossi M, Paschka P, Buhler A, Dietrich S, Busch R, Ritgen M et al (2013) TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood 121:3284–3288

    CAS  PubMed  Google Scholar 

  • Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, Lange E, Koppler H, Kiehl M, Sokler M et al (2016) First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 17:928–942

    CAS  PubMed  Google Scholar 

  • Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, Grunn A, Fangazio M, Capello D, Monti S et al (2011) Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 208:1389–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fama R, Bomben R, Rasi S, Dal Bo M, Ciardullo C, Monti S, Rossi F, D’Agaro T, Zucchetto A, Gattei V et al (2014) Ibrutinib-naive chronic lymphocytic leukemia lacks Bruton tyrosine kinase mutations associated with treatment resistance. Blood 124:3831–3833

    CAS  PubMed  Google Scholar 

  • Filip AA, Cisel B, Koczkodaj D, Wasik-Szczepanek E, Piersiak T, Dmoszynska A (2013) Circulating microenvironment of CLL: are nurse-like cells related to tumor-associated macrophages? Blood Cells Mol Dis 50:263–270

    CAS  PubMed  Google Scholar 

  • Filip AA, Cisel B, Wasik-Szczepanek E (2015) Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes. Clin Exp Med 15:73–83

    CAS  PubMed  Google Scholar 

  • Fischer K, Cramer P, Busch R, Bottcher S, Bahlo J, Schubert J, Pfluger KH, Schott S, Goede V, Isfort S et al (2012) Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 30:3209–3216

    CAS  PubMed  Google Scholar 

  • Foon KA, Boyiadzis M, Land SR, Marks S, Raptis A, Pietragallo L, Meisner D, Laman A, Sulecki M, Butchko A et al (2009) Chemoimmunotherapy with low-dose fludarabine and cyclophosphamide and high dose rituximab in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol 27:498–503

    CAS  PubMed  Google Scholar 

  • Foon KA, Mehta D, Lentzsch S, Kropf P, Marks S, Lenzner D, Pietragallo L, Sulecki M, Tarhini A, Boyiadzis M (2012) Long-term results of chemoimmunotherapy with low-dose fludarabine, cyclophosphamide and high-dose rituximab as initial treatment for patients with chronic lymphocytic leukemia. Blood 119:3184–3185

    CAS  PubMed  Google Scholar 

  • Fresquet V, Rieger M, Carolis C, Garcia-Barchino MJ, Martinez-Climent JA (2014) Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood 123:4111–4119

    CAS  PubMed  Google Scholar 

  • Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, Widhopf GF 2nd, Rassenti LZ, Cantwell MJ, Prussak CE et al (2008) Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci U S A 105:3047–3052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, Barrientos JC, Zelenetz AD, Kipps TJ, Flinn I et al (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370:997–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furney SJ, Pedersen M, Gentien D, Dumont AG, Rapinat A, Desjardins L, Turajlic S, Piperno-Neumann S, de la Grange P, Roman-Roman S et al (2013) SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov 3:1122–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler CH, van T’Veer MB, Jurlander J, Walewski J, Tjonnfjord G, Itala Remes M, Kimby E, Kozak T, Polliack A, Wu KL et al (2014) Frontline low-dose alemtuzumab with fludarabine and cyclophosphamide prolongs progression-free survival in high-risk CLL. Blood 123:3255–3262

    CAS  PubMed  Google Scholar 

  • Ghia P, Guida G, Stella S, Gottardi D, Geuna M, Strola G, Scielzo C, Caligaris-Cappio F (2003) The pattern of CD38 expression defines a distinct subset of chronic lymphocytic leukemia (CLL) patients at risk of disease progression. Blood 101:1262–1269

    CAS  PubMed  Google Scholar 

  • Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy MS, Illmer T et al (2014) Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 370:1101–1110

    CAS  PubMed  Google Scholar 

  • Goede V, Fischer K, Engelke A, Schlag R, Lepretre S, Montero LF, Montillo M, Fegan C, Asikanius E, Humphrey K et al (2015) Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia 29:1602–1604

    CAS  PubMed  Google Scholar 

  • Granziero L, Circosta P, Scielzo C, Frisaldi E, Stella S, Geuna M, Giordano S, Ghia P, Caligaris-Cappio F (2003) CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood 101:1962–1969

    CAS  PubMed  Google Scholar 

  • Gribben JG, O’Brien S (2011) Update on therapy of chronic lymphocytic leukemia. J Clin Oncol 29:544–550

    PubMed  PubMed Central  Google Scholar 

  • Gricks CS, Zahrieh D, Zauls AJ, Gorgun G, Drandi D, Mauerer K, Neuberg D, Gribben JG (2004) Differential regulation of gene expression following CD40 activation of leukemic compared to healthy B cells. Blood 104:4002–4009

    CAS  PubMed  Google Scholar 

  • Hallek M (2015) Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hematol 90:446–460

    CAS  PubMed  Google Scholar 

  • Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111:5446–5456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M, Hopfinger G, Hess G, von Grunhagen U et al (2010) Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376:1164–1174

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  Google Scholar 

  • Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, Jones J, Andritsos L, Puri KD, Lannutti BJ et al (2010) Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116:2078–2088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herman SE, Montraveta A, Niemann CU, Mora-Jensen H, Gulrajani M, Krantz F, Mantel R, Smith LL, McClanahan F, Harrington B et al (2016) The Bruton’s tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res [Epub ahead of print]

    Google Scholar 

  • Herndon TM, Chen SS, Saba NS, Valdez J, Emson C, Gatmaitan M, Tian X, Hughes TE, Sun C, Arthur DC et al (2017) Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia [Epub ahead of print]. doi:10.1038/leu.2017.11

    PubMed  PubMed Central  Google Scholar 

  • Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, Giese N, O’Brien S, Yu A, Miller LL et al (2011) The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118:3603–3612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huw LY, O’Brien C, Pandita A, Mohan S, Spoerke JM, Lu S, Wang Y, Hampton GM, Wilson TR, Lackner MR (2013) Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Oncogenesis 2:e83

    CAS  PubMed  PubMed Central  Google Scholar 

  • International CLL-IPI Working Group (2016) An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol 17:779–790

    Google Scholar 

  • Iyengar S, Clear A, Bodor C, Maharaj L, Lee A, Calaminici M, Matthews J, Iqbal S, Auer R, Gribben J, Joel S (2013) P110alpha-mediated constitutive PI3K signaling limits the efficacy of p110delta-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. Blood 121:2274–2284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jitschin R, Braun M, Qorraj M, Saul D, Le Blanc K, Zenz T, Mougiakakos D (2015) Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling. Blood 125:3432–3436

    CAS  PubMed  Google Scholar 

  • Kalos M (2016) Chimeric antigen receptor-engineered T cells in CLL: the next chapter unfolds. J Immunother Cancer 4:5

    PubMed  PubMed Central  Google Scholar 

  • Kaufman M, Limaye SA, Driscoll N, Johnson C, Caramanica A, Lebowicz Y, Patel D, Kohn N, Rai K (2009) A combination of rituximab, cyclophosphamide and dexamethasone effectively treats immune cytopenias of chronic lymphocytic leukemia. Leuk Lymphoma 50:892–899

    CAS  PubMed  Google Scholar 

  • Kay NE, O’Brien SM, Pettitt AR, Stilgenbauer S (2007) The role of prognostic factors in assessing “high-risk” subgroups of patients with chronic lymphocytic leukemia. Leukemia 21:1885–1891

    CAS  PubMed  Google Scholar 

  • Keating MJ (1999) Chronic lymphocytic leukemia. Semin Oncol 26:107–114

    CAS  PubMed  Google Scholar 

  • Komarova NL, Burger JA, Wodarz D (2014) Evolution of ibrutinib resistance in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci U S A 111:13906–13911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lampson BL, Kasar SN, Matos TR, Morgan EA, Rassenti L, Davids MS, Fisher DC, Freedman AS, Jacobson CA, Armand P et al (2016) Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 128:195–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, Kluth S, Bozic I, Lawrence M, Bottcher S et al (2015) Mutations driving CLL and their evolution in progression and relapse. Nature 526:525–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M et al (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117:591–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE (2005) VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 19:513–523

    CAS  PubMed  Google Scholar 

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6:443–450

    CAS  PubMed  Google Scholar 

  • Liang L, Zhao M, Zhu YC, Hu X, Yang LP, Liu H (2016) Efficacy of lenalidomide in relapsed/refractory chronic lymphocytic leukemia patient: a systematic review and meta-analysis. Ann Hematol 95:1473–1482

    CAS  PubMed  Google Scholar 

  • Liu TM, Woyach JA, Zhong Y, Lozanski A, Lozanski G, Dong S, Strattan E, Lehman A, Zhang X, Jones JA et al (2015) Hypermorphic mutation of phospholipase C, gamma2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. Blood 126:61–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundin J, Kimby E, Bjorkholm M, Broliden PA, Celsing F, Hjalmar V, Mollgard L, Rebello P, Hale G, Waldmann H et al (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100:768–773

    CAS  PubMed  Google Scholar 

  • Lutzny G, Kocher T, Schmidt-Supprian M, Rudelius M, Klein-Hitpass L, Finch AJ, Durig J, Wagner M, Haferlach C, Kohlmann A et al (2013) Protein kinase c-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo. Cancer Cell 23:77–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maddocks KJ, Ruppert AS, Lozanski G, Heerema NA, Zhao W, Abruzzo L, Lozanski A, Davis M, Gordon A, Smith LL et al (2015) Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients With Chronic Lymphocytic Leukemia. JAMA Oncol 1:80–87

    PubMed  PubMed Central  Google Scholar 

  • Malcikova J, Pavlova S, Kozubik KS, Pospisilova S (2014) TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia. Hum Mutat 35:663–671

    CAS  PubMed  Google Scholar 

  • Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V, Cejkova S, Svitakova M, Skuhrova Francova H, Brychtova Y et al (2009) Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood 114:5307–5314

    CAS  PubMed  Google Scholar 

  • Mauro FR, Foa R, Cerretti R, Giannarelli D, Coluzzi S, Mandelli F, Girelli G (2000) Autoimmune hemolytic anemia in chronic lymphocytic leukemia: clinical, therapeutic, and prognostic features. Blood 95:2786–2792

    CAS  PubMed  Google Scholar 

  • Messina M, Del Giudice I, Khiabanian H, Rossi D, Chiaretti S, Rasi S, Spina V, Holmes AB, Marinelli M, Fabbri G et al (2014) Genetic lesions associated with chronic lymphocytic leukemia chemo-refractoriness. Blood 123:2378–2388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr J, Helfrich H, Fuge M, Eldering E, Buhler A, Winkler D, Volden M, Kater AP, Mertens D, Te Raa D et al (2011) DNA damage-induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. Blood 117:1622–1632

    CAS  PubMed  Google Scholar 

  • Muellner MK, Uras IZ, Gapp BV, Kerzendorfer C, Smida M, Lechtermann H, Craig-Mueller N, Colinge J, Duernberger G, Nijman SM (2011) A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol 7:787–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muzio M, Scielzo C, Bertilaccio MT, Frenquelli M, Ghia P, Caligaris-Cappio F (2009) Expression and function of toll like receptors in chronic lymphocytic leukaemia cells. Br J Haematol 144:507–516

    CAS  PubMed  Google Scholar 

  • O’Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA, Grant B, Richards DA, Coleman M, Wierda WG et al (2014) Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol 15:48–58

    PubMed  Google Scholar 

  • O’Brien S, Jones JA, Coutre SE, Mato AR, Hillmen P, Tam C, Osterborg A, Siddiqi T, Thirman MJ, Furman RR et al (2016) Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol 17:1409–1418

    PubMed  Google Scholar 

  • Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3:317–330

    CAS  PubMed  Google Scholar 

  • Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E et al (2015) Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 126:1106–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pepper C, Hewamana S, Brennan P, Fegan C (2009) NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 5:1027–1037

    CAS  PubMed  Google Scholar 

  • Pflug N, Bahlo J, Shanafelt TD, Eichhorst BF, Bergmann MA, Elter T, Bauer K, Malchau G, Rabe KG, Stilgenbauer S et al (2014) Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 124:49–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pospisilova S, Gonzalez D, Malcikova J, Trbusek M, Rossi D, Kater AP, Cymbalista F, Eichhorst B, Hallek M, Dohner H et al (2012) ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia 26:1458–1461

    CAS  PubMed  Google Scholar 

  • Pozzo F, Bittolo T, Arruga F, Bulian P, Macor P, Tissino E, Gizdic B, Rossi FM, Bomben R, Zucchetto A et al (2016) NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 30:182–189

    CAS  PubMed  Google Scholar 

  • Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI, Munar M, Rubio-Perez C, Jares P, Aymerich M et al (2015) Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526:519–524

    CAS  PubMed  Google Scholar 

  • Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purroy N, Abrisqueta P, Carabia J, Carpio C, Palacio C, Bosch F, Crespo M (2015) Co-culture of primary CLL cells with bone marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo. Oncotarget 6:7632–7643

    PubMed  Google Scholar 

  • Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, Ramsay AJ, Bea S, Pinyol M, Martinez-Trillos A et al (2011) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44:47–52

    PubMed  Google Scholar 

  • Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS (1975) Clinical staging of chronic lymphocytic leukemia. Blood 46:219–234

    CAS  PubMed  Google Scholar 

  • Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, Byrd JC, Gribben JG (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118:2427–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC et al (2004) ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 351:893–901

    CAS  PubMed  Google Scholar 

  • Riches JC, Gribben JG (2016) Mechanistic and clinical aspects of lenalidomide treatment for chronic lymphocytic leukemia. Curr Cancer Drug Targets 16:689–700

    CAS  PubMed  Google Scholar 

  • Robak T, Dmoszynska A, Solal-Celigny P, Warzocha K, Loscertales J, Catalano J, Afanasiev BV, Larratt L, Geisler CH, Montillo M et al (2010) Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol 28:1756–1765

    CAS  PubMed  Google Scholar 

  • Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, Kipps TJ, Anderson MA, Brown JR, Gressick L et al (2016) Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 374:311–322

    CAS  PubMed  Google Scholar 

  • Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, Bartoli A, Coaccioli S, Screpanti I, Marconi P (2009) Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113:856–865

    CAS  PubMed  Google Scholar 

  • Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R (2013) Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 54:2351–2364

    CAS  PubMed  Google Scholar 

  • Rossi D (2016) Venetoclax: a new weapon to treat high-risk CLL. Lancet Oncol 17:690–691

    PubMed  Google Scholar 

  • Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M, Fangazio M, Vaisitti T, Monti S, Chiaretti S et al (2011) Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 118:6904–6908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S, Chiaretti S, Del Giudice I, Fabbri G, Bruscaggin A et al (2012) Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 119:2854–2862

    CAS  PubMed  Google Scholar 

  • Rossi D, Gaidano G (2016) Richter syndrome: pathogenesis and management. Semin Oncol 43:311–319

    CAS  PubMed  Google Scholar 

  • Schattner EJ (2000) CD40 ligand in CLL pathogenesis and therapy. Leuk Lymphoma 37:461–472

    CAS  PubMed  Google Scholar 

  • Schott AF, Apel IJ, Nunez G, Clarke MF (1995) Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 11:1389–1394

    CAS  PubMed  Google Scholar 

  • Secchiero P, Melloni E, di Iasio MG, Tiribelli M, Rimondi E, Corallini F, Gattei V, Zauli G (2009) Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 113:4300–4308

    CAS  PubMed  Google Scholar 

  • Serra S, Horenstein AL, Vaisitti T, Brusa D, Rossi D, Laurenti L, D’Arena G, Coscia M, Tripodo C, Inghirami G et al (2011) CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 118:6141–6152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serra S, Vaisitti T, Audrito V, Bologna C, Buonincontri R, Chen SS, Arruga F, Brusa D, Coscia M, Jaksic O et al (2016) Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Adv 1:15

    Google Scholar 

  • Sharma S, Galanina N, Guo A, Lee J, Kadri S, Van Slambrouck C, Long B, Wang W, Ming M, Furtado LV et al (2016) Identification of a structurally novel BTK mutation that drives ibrutinib resistance in CLL. Oncotarget 7:68833–68841

    PubMed  PubMed Central  Google Scholar 

  • Soma LA, Craig FE, Swerdlow SH (2006) The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol 37:152–159

    CAS  PubMed  Google Scholar 

  • Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, Kutok JL, Kearney JF, Otipoby KL, Rajewsky K (2009) PI3 kinase signals BCR-dependent mature B cell survival. Cell 139:573–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stilgenbauer S, Dohner H (2002) Campath-1H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. N Engl J Med 347:452–453

    PubMed  Google Scholar 

  • Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T, Puvvada SD, Wendtner CM, Roberts AW, Jurczak W et al (2016) Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 17:768–778

    CAS  PubMed  Google Scholar 

  • Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner K, Buhler A, Bottcher S, Ritgen M, Kneba M et al (2014) Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 123:3247–3254

    CAS  PubMed  Google Scholar 

  • Te Raa GD, Kater AP (2016) TP53 dysfunction in CLL: implications for prognosis and treatment. Best Pract Res Clin Haematol 29:90–99

    PubMed  Google Scholar 

  • Tsimberidou AM, Keating MJ (2005) Richter syndrome: biology, incidence, and therapeutic strategies. Cancer 103:216–228

    CAS  PubMed  Google Scholar 

  • Villamor N, Conde L, Martinez-Trillos A, Cazorla M, Navarro A, Bea S, Lopez C, Colomer D, Pinyol M, Aymerich M et al (2013) NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 27:1100–1106

    CAS  PubMed  Google Scholar 

  • Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJ, Cohen GM (2009) Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 113:4403–4413

    CAS  PubMed  Google Scholar 

  • Walter HS, Rule SA, Dyer MJ, Karlin L, Jones C, Cazin B, Quittet P, Shah N, Hutchinson CV, Honda H et al (2016) A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 127:411–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Y, Wu CJ (2013) SF3B1 mutations in chronic lymphocytic leukemia. Blood 121:4627–4634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Brooks AN, Fan J, Wan Y, Gambe R, Li S, Hergert S, Yin S, Freeman SS, Levin JZ et al (2016) Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell 30:750–763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L et al (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365:2497–2506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendtner CM, Hallek M, Fraser GA, Michallet AS, Hillmen P, Durig J, Kalaycio M, Gribben JG, Stilgenbauer S, Buhler A et al (2016) Safety and efficacy of different lenalidomide starting doses in patients with relapsed or refractory chronic lymphocytic leukemia: results of an international multicenter double-blinded randomized phase II trial. Leuk Lymphoma 57:1291–1299

    CAS  PubMed  Google Scholar 

  • Wiestner A (2012) Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood 120:4684–4691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woyach JA (2015) Patterns of resistance to B cell-receptor pathway antagonists in chronic lymphocytic leukemia and strategies for management. Hematology Am Soc Hematol Educ Program 2015:355–360

    PubMed  Google Scholar 

  • Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, Xue L, Li DH, Steggerda SM, Versele M et al (2014a) Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med 370:2286–2294

    PubMed  PubMed Central  Google Scholar 

  • Woyach JA, Smucker K, Smith LL, Lozanski A, Zhong Y, Ruppert AS, Lucas D, Williams K, Zhao W, Rassenti L et al (2014b) Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood 123:1810–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woyach JA, Johnson AJ (2015) Targeted therapies in CLL: mechanisms of resistance and strategies for management. Blood 126:471–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu C, Tsui ST, Liu D (2016) Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol 9:80

    PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    CAS  PubMed  Google Scholar 

  • Young A, Ngiow SF, Barkauskas DS, Sult E, Hay C, Blake SJ, Huang Q, Liu J, Takeda K, Teng MW et al (2016) Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30:391–403

    CAS  PubMed  Google Scholar 

  • Zenz T, Benner A, Dohner H, Stilgenbauer S (2008a) Chronic lymphocytic leukemia and treatment resistance in cancer: the role of the p53 pathway. Cell Cycle 7:3810–3814

    CAS  PubMed  Google Scholar 

  • Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A, Denzel T, Winkler D, Edelmann J, Schwanen C et al (2008b) Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 112:3322–3329

    CAS  PubMed  Google Scholar 

  • Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D, Buhler A, Edelmann J, Bergmann M, Hopfinger G et al (2010) TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 28:4473–4479

    PubMed  Google Scholar 

  • Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, Winkler D, Durig J, van Oers MH, Mertens D et al (2009) miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113:3801–3808

    CAS  PubMed  Google Scholar 

  • Zhang S, Wu CC, Fecteau JF, Cui B, Chen L, Zhang L, Wu R, Rassenti L, Lao F, Weigand S, Kipps TJ (2013) Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44. Proc Natl Acad Sci U S A 110:6127–6132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Lee GS, Brady J, Datta S, Katan M, Sheikh A, Martins MS, Bunney TD, Santich BH, Moir S et al (2012) A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 91:713–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1:a001883

    PubMed  PubMed Central  Google Scholar 

  • Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal Bo M, Marconi D, Bossi F, Lorenzon D, Degan M, Rossi FM et al (2009) CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res 69:4001–4009

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Partly supported by the Italian Association for Cancer Research (IG17314), by the Ministry of Health (GR-2011-02346826 and RF-2011-02349712) and by Human Genetics Foundation institutional funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Arruga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arruga, F., Deaglio, S. (2017). Mechanisms of Resistance to Targeted Therapies in Chronic Lymphocytic Leukemia. In: Mandalà, M., Romano, E. (eds) Mechanisms of Drug Resistance in Cancer Therapy. Handbook of Experimental Pharmacology, vol 249. Springer, Cham. https://doi.org/10.1007/164_2017_12

Download citation

Publish with us

Policies and ethics