Skip to main content

Nanohybrid Scaffolds for the Treatment of Diabetic Wounds

  • Chapter
  • First Online:
Pressure Injury, Diabetes and Negative Pressure Wound Therapy

Abstract

Diabetic wounds are the main cause of mortality in patients with diabetes. Recent reports suggest that even though the pathophysiology of diabetic wound is multifactorial, persistent inflammation with infections and lack of tissue regeneration (tissue management) leads to impaired wound healing in diabetes and leaves these wounds in a chronic nonhealing stage. Hence, the aim of this investigation is to formulate drug (curcumin and doxycycline hyclate)-loaded biomimetic collagen–alginate composite nanohybrid scaffolds which have both anti-inflammatory and antibacterial activities for potential tissue regeneration in diabetic wounds. The prepared novel composite nanohybrid scaffolds satisfied the properties of an ideal diabetic wound dressing in terms of mechanical strength, swelling, porosity, biodegradation, biocompatibility, controlled release, cell adhesion, and proliferation with antibacterial anti-inflammatory properties which are crucial for tissue regeneration in diabetic wounds. Hence, this study suggests that the synergistic combination of curcumin, doxycycline hyclate (anti-inflammatory and antibacterial), chitosan (controlled drug carrier, wound healing), collagen (established wound healer), and alginate (biomaterial for regenerative medicine) is a promising strategy to address various pathological manifestations of diabetic wounds and has better wound healing capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Allen RJ Jr, Soares MA, Haberman ID, Szpalski C, Schachar J, Lin CD, Nguyen PD, Saadeh PB, Warren SM (2014) Combination therapy accelerates diabetic wound closure. PLoS One 9(3):e92667

    PubMed  Google Scholar 

  2. Karri VNR, Kuppusamy G, Mulukutla S, Sood S, Malayandi R (2015) Understanding the implications of pharmaceutical excipients and additives in the treatment of diabetic foot ulcers. J Excipients Food Chem 6(1):7–22

    CAS  Google Scholar 

  3. Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D (2014) Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol 20(2):322–330

    CAS  PubMed  Google Scholar 

  4. Mat Saad AZ, Khoo TL, Halim AS (2013) Wound bed preparation for chronic diabetic foot ulcers. ISRN Endocrinol 2013:608313

    PubMed  PubMed Central  Google Scholar 

  5. Mi FL, Wu YB, Shyu SS, Schoung JY, Huang YB, Tsai YH, Hao JY (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59(3):438–449

    CAS  PubMed  Google Scholar 

  6. Sripriya R, Kumar MS, Sehgal PK (2004) Improved collagen bilayer dressing for the controlled release of drugs. J Biomed Mater Res B Appl Biomater 70((2):389–396

    Google Scholar 

  7. Meaume S, Vallet D, Nguyen Morere M, Téot L (2005) Evaluation of a silver-releasing hydroalginate dressing in chronic wounds with signs of local infection. J Wound Care 14(9):411–419

    CAS  PubMed  Google Scholar 

  8. Shanmugasundaram N, Sundaraseelan J, Uma S, Selvaraj D, Babu M (2006) Design and delivery of silver sulfadiazine from alginate microspheres-impregnated collagen scaffold. J Biomed Mater Res B Appl Biomater 77((2):378–388

    Google Scholar 

  9. Cullen B, Smith R, Mcculloch E, Silcock D, Morrison L (2002) Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen 10(1):16–25

    PubMed  Google Scholar 

  10. Schönfelder U, Abel M, Wiegand C, Klemm D, Elsner P, Hipler U-C (2005) Influence of selected wound dressings on PMN elastase in chronic wound fluid and their antioxidative potential in vitro. Biomaterials 26(33):6664–6673

    PubMed  Google Scholar 

  11. Mahmoud AA, Salama AH (2016) Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and in-vivo wound healing assessment. Eur J Pharm Sci 83:155–165

    CAS  PubMed  Google Scholar 

  12. Brahatheeswaran DY, Yoshida Y, Toru M, Sakthi Kumar D (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:290602

    Google Scholar 

  13. Yannas IV (1990) Biologically active analogues of the extracellular matrix: artificial skin and nerves. Angewandte Chemie Int Ed 29(1):20–35

    Google Scholar 

  14. Hou C, Shen L, Huang Q, Mi J, Wu Y, Yang M, Zeng W, Li L, Chen W, Zhu C (2013) The effect of heme oxygenase-1 complexed with collagen on MSC performance in the treatment of diabetic ischemic ulcer. Biomaterials 34(1):112–120

    CAS  PubMed  Google Scholar 

  15. McCarty SM, Percival SL (2013) Proteases and delayed wound healing. Adv Wound Care (New Rochelle) 2(8):438–447

    Google Scholar 

  16. Wang W, Lin S, Xiao Y, Huang Y, Tan Y, Cai L, Li X (2008) Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 82(3–4):190–204

    CAS  PubMed  Google Scholar 

  17. Yager DR, Chen SM, Ward SI, Olutoye OO, Diegelmann RF, Kelman Cohen I (1997) Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. Wound Repair Regen 5(1):23–32

    PubMed  Google Scholar 

  18. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22

    CAS  PubMed  Google Scholar 

  19. Pieper JS, Oosterhof A, Dijkstra PJ, Veerkamp JH, van Kuppevelt TH (1999) Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials 20(9):847–858

    CAS  PubMed  Google Scholar 

  20. Schulz Torres D, Freyman TM, Yannas IV, Spector M (2000) Tendon cell contraction of collagen–GAG matrices in vitro: effect of cross-linking. Biomaterials 21(15):1607–1619

    Google Scholar 

  21. Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77

    CAS  Google Scholar 

  22. Lee M, Lo AC, Cheung PT, Wong D, Chan BP (2009) Drug carrier systems based on collagen–alginate composite structures for improving the performance of GDNF-secreting HEK293 cells. Biomaterials 30(6):1214–1221

    CAS  PubMed  Google Scholar 

  23. Lin YC, Brayfield CA, Gerlach JC, Peter Rubin J, Marra KG (2009) Peptide modification of polyethersulfone surfaces to improve adipose-derived stem cell adhesion. Acta Biomater 5(5):1416–1424

    CAS  PubMed  Google Scholar 

  24. Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24(26):4833–4841

    CAS  Google Scholar 

  25. Mohandas A, Kumar PTS, Raja B, Lakshmanan VK, Jayakumar R (2015) Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. Int J Nanomedicine 10(Suppl 1):53–66

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Karri VVSR, Kuppusamy G, Satish Kumar M, Malayandi R (2015) Multiple biological actions of curcumin in the management of diabetic foot ulcer complications: a systematic review. Trop Med Surg 3(179):2–10

    Google Scholar 

  27. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968

    CAS  PubMed  Google Scholar 

  28. Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, Wei Y, Qian Z (2013) A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 34(27):6377–6387

    CAS  PubMed  Google Scholar 

  29. Archana D, Dutta PK, Dutta J (2016) Chitosan: a potential therapeutic dressing material for wound healing. In: Dutta KP (ed) Chitin and Chitosan for regenerative medicine. Springer, New Delhi, pp 193–227

    Google Scholar 

  30. Rajitha P, Gopinath D, Biswas R, Sabitha M, Jayakumar R (2016 Aug) Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv 13(8):1177–1194

    CAS  PubMed  Google Scholar 

  31. Adhirajan N, Shanmugasundaram N, Shanmuganathan S, Babu M (2009) Collagen-based wound dressing for doxycycline delivery: in-vivo evaluation in an infected excisional wound model in rats. J Pharm Pharmacol 61(12):1617–1623

    CAS  PubMed  Google Scholar 

  32. Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Curcumin as a wound healing agent. Life Sci 116(1):1–7

    CAS  PubMed  Google Scholar 

  33. Calvo P, Remunan-Lopez C, Vila-Jato J, Alonso M (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132

    CAS  Google Scholar 

  34. Sang L, Luo D, Xu S, Wang X, Li X (2011) Fabrication and evaluation of biomimetic scaffolds by using collagen–alginate fibrillar gels for potential tissue engineering applications. Mater Sci Eng C 31(2):262–271

    CAS  Google Scholar 

  35. Cheung DT, Perelman N, Ko EC, Nimni M (1985) Mechanism of crosslinking of proteins by glutaraldehyde III. Reaction with collagen in tissues. Connect Tiss Res 13(2):109–115

    CAS  Google Scholar 

  36. Swann DA, Balazs EA (1966) Determination of the hexosamine content of macro-molecules with manual and automated techniques using the p-dimethylaminobenzaldehyde reaction. Biochim Biophys Acta (BBA) - General Subjects 130(1):112–129

    CAS  Google Scholar 

  37. Nguyen VC, Nguyen VB, Hsieh M-F (2013) Curcumin-loaded chitosan/gelatin composite sponge for wound healing application. Int J Polym Sci 2013:7–13

    Google Scholar 

  38. Gorczyca G, Tylingo R, Szweda P, Augustin E, Sadowska M, Milewski S (2014) Preparation and characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using chitosan–CO2 solution. Carbohydr Polym 102:901–911

    CAS  PubMed  Google Scholar 

  39. Anisha B, Biswas R, Chennazhi K, Jayakumar R (2013) Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int J Biolog Macromol 62:310–320

    CAS  Google Scholar 

  40. Draize JH, Woodard G, Calvery HO (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharm Exp Therap 82(3):377–390

    CAS  Google Scholar 

  41. Fernandez-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16(10):1576–1581

    CAS  Google Scholar 

  42. Chaubey P, Patel RR, Mishra B (2014) Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Exp Opin Drug Deliv 11(8):1163–1181

    CAS  Google Scholar 

  43. Gonzalez-Mira E, Egea MA, Souto EB, Calpena AC, GarcĂ­a ML (2011) Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology 22(4):045101

    CAS  PubMed  Google Scholar 

  44. Kim Y, Kim G (2013) Collagen/alginate scaffolds comprising core (PCL)-shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities. J Mater Chem B 1(25):3185–3194

    CAS  Google Scholar 

  45. Jithendra P, Rajam AM, Kalaivani T, Mandal AB, Rose C (2013) Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5(15):7291–7298

    CAS  PubMed  Google Scholar 

  46. Sailakshmi G, Mitra T, Gnanamani A (2013) Engineering of chitosan and collagen macromolecules using sebacic acid for clinical applications. Progr Biomater 2(1):1–12

    Google Scholar 

  47. Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95(1):530–539

    CAS  PubMed  Google Scholar 

  48. Food, Administration D, Health UDo, Services H (1995) Use of International Standard ISO 10993, biological evaluation of medical devices–Part 1: Evaluation and testing; G95-1. Food and Drug Administration, Center for Devices and Radiological Health, Office of Device Evaluation, Rockville, MD

    Google Scholar 

  49. Gillette BM, Jensen JA, Wang M, Tchao J, Sia SK (2010) Dynamic hydrogels: switching of 3d microenvironments using two-component naturally derived extracellular matrices. Adv Mater 22(6):686–691

    CAS  PubMed  Google Scholar 

  50. Kähäri V-M, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6(5):199–213

    PubMed  Google Scholar 

  51. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12):1867–1876

    CAS  PubMed  Google Scholar 

  52. Adhirajan N, Shanmugasundaram N, Shanmuganathan S, Babu M (2009) Functionally modified gelatin microspheres impregnated collagen scaffold as novel wound dressing to attenuate the proteases and bacterial growth. Eur J Pharm Sci 36(2):235–245

    CAS  PubMed  Google Scholar 

  53. Tettamanti G, Grimaldi A, Rinaldi L, Arnaboldi F, Congiu T, Valvassori R et al (2004) The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol Cell 96(6):443–455

    CAS  PubMed  Google Scholar 

  54. Bainbridge P (2013) Wound healing and the role of fibroblasts. J Wound Care 22(8):407–412

    CAS  PubMed  Google Scholar 

  55. Blakytny R, Jude E (2006) The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med 23(6):594–608

    CAS  PubMed  Google Scholar 

  56. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117(5):1219–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuboi R, Shi C-M, Rifkin DB, Ogawa H (1992) A wound healing model using healing-impaired diabetic mice. J Dermatol 19(11):673–675

    CAS  PubMed  Google Scholar 

  58. Cai L, Wang J, Li Y, Sun X, Wang L, Zhou Z, Kang YJ (2005) Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 54(6):1829–1837

    CAS  PubMed  Google Scholar 

  59. Connelly K, Kelly D, Gilbert R (2007) Clinically relevant models of diabetic cardiac complications. Circ Res 101(6):e78

    CAS  PubMed  Google Scholar 

  60. Hsueh W, Abel ED, Breslow JL, Maeda N, Davis RC, Fisher EA, Dansky H, McClain DA, McIndoe R, Wassef MK, Rabadán-Diehl C, Goldberg IJ (2007) Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 100(10):1415–1427

    CAS  PubMed  Google Scholar 

  61. Schäffer MR, Tantry U, Efron PA, Ahrendt GM, Thornton FJ, Barbul A (1997) Diabetes-impaired healing and reduced wound nitric oxide synthesis: a possible pathophysiologic correlation. Surgery 121(5):513–519

    PubMed  Google Scholar 

  62. Rayment EA, Upton Z, Shooter GK (2008) Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. Br J Dermatol 158(5):951–961

    CAS  PubMed  Google Scholar 

  63. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40(6):1334–1347

    CAS  PubMed  Google Scholar 

  64. Yang C, Zhu P, Yan L, Chen L, Meng R, Lao G (2009) Dynamic changes in matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 levels during wound healing in diabetic rats. J Am Podiat Med Assoc 99(6):489–496

    Google Scholar 

  65. McCarty SM, Percival SL (2013) Proteases and delayed wound healing. Adv Wound Care 2(8):438–447

    Google Scholar 

  66. Xu F, Zhang C, Graves DT (2013) Abnormal cell responses and role of TNF-in impaired diabetic wound healing. Biomed Res Int 2013:754802

    PubMed  PubMed Central  Google Scholar 

  67. Mast BA, Schultz GS (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 4(4):411–420

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veera Venkata Satyanarayana Reddy Karri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karri, V.V.S.R., Kuppusamy, G., Wadhwani, A.D., Malayandi, R. (2017). Nanohybrid Scaffolds for the Treatment of Diabetic Wounds. In: Shiffman, M., Low, M. (eds) Pressure Injury, Diabetes and Negative Pressure Wound Therapy. Recent Clinical Techniques, Results, and Research in Wounds, vol 3. Springer, Cham. https://doi.org/10.1007/15695_2017_46

Download citation

  • DOI: https://doi.org/10.1007/15695_2017_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10700-0

  • Online ISBN: 978-3-030-10701-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics