Skip to main content

Landscape Genomics for Wildlife Research

  • Chapter
  • First Online:
Population Genomics: Wildlife

Part of the book series: Population Genomics ((POGE))

Abstract

Landscape genomics investigates how spatial and environmental factors influence geographic patterns of genome-wide genetic variation. Adaptive landscape genomics focuses on how these spatial and environmental processes structure the amount and distribution of selection-driven genetic variation among populations, which ultimately determines how phenotypic variation is arrayed across landscapes. This adaptive landscape genomics approach can be used to identify the causal factors underlying local adaptation and has great potential to guide decision-making in applied wildlife research, especially in light of anthropogenic climate and land use change. Conservation and management applications include delineating conservation units, designing conservation monitoring programs, and predicting changes in the spatial distribution and potential loss of adaptive genomic variation under environmental change. However, there remains great untapped potential for the application of adaptive landscape genomics to wildlife research, including moving beyond correlative genotype-environment association tests. In this chapter, we explore and discuss the potential of adaptive landscape genomics for improving wildlife research, including case studies that illustrate its application in wildlife management and conservation. We also present a comprehensive workflow for adaptive landscape genomics studies in wildlife, including sampling design, genomic and environmental data production, and data analysis. We conclude with avenues and perspectives for future work and ongoing challenges in adaptive landscape genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JR, Vucetich LM, Hedrick PW, Peterson RO, Vucetich JA. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population. Proc R Soc B Biol Sci. 2011;278:3336–44.

    Article  Google Scholar 

  • Ahrens CW, Rymer PD, Stow A, Bragg J, Dillon S, Umbers KDL, Dadaniec RY. The search for loci under selection: trends, biases and progress. Mol Ecol. 2018;27:1342–56.

    Article  PubMed  Google Scholar 

  • Aitken SN, Whitlock MC. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst. 2013;44:367–88.

    Article  Google Scholar 

  • Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR. RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics. 2016;202:389–400.

    Article  PubMed  CAS  Google Scholar 

  • Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N. Genetic effects of harvest on wild animal populations. Trends Ecol Evol. 2008;23:327–37.

    Article  PubMed  Google Scholar 

  • Alvarez M, Schrey AW, Richards CL. Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? Mol Ecol. 2015;24:710–25.

    Article  PubMed  CAS  Google Scholar 

  • Amish SJ, Hohenlohe PA, Painter S, Leary RF, Muhlfeld C, Allendorf FW, Luikart G. RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays. Mol Ecol Resour. 2012;12:653–60.

    Article  PubMed  CAS  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrews KR, DeBarba M, Russello MA, Waits LP. Techniques for using non-invasive, archival, and environmental samples in population genomic studies. In: Hohenlohe PA, Rajora OP, editors. Population genomics: wildlife. Cham: Springer; 2018.

    Google Scholar 

  • Aykanat T, Lindqvist M, Pritchard VL, Primmer CR. From population genomics to conservation and management: a workflow for targeted analysis of markers identified using genome-wide approaches in Atlantic salmon Salmo salar. J Fish Biol. 2016;89:2658–79.

    Article  PubMed  CAS  Google Scholar 

  • Balkenhol N, Landguth EL. Simulation modelling in landscape genetics: on the need to go further. Mol Ecol. 2011;20:667–70.

    Article  PubMed  Google Scholar 

  • Balkenhol N, Cushman SA, Waits LP, Storfer A. Current status, future opportunities, and remaining challenges in landscape genetics. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, editors. Landscape genetics. Hoboken: Wiley; 2015.

    Chapter  Google Scholar 

  • Balkenhol N, Dudaniec RY, Krutovsky KV, et al. Landscape genomics: understanding relationships between environmental heterogeneity and genomic characteristics of populations. In: Rajora OP, editor. Population genomics concepts, strategies and approaches. Cham: Springer; 2017.

    Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR. Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A. 2013;110:1387–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science. 2018;359:83–6.

    Article  PubMed  CAS  Google Scholar 

  • Benestan LM, Ferchaud A-L, Hohenlohe PA, Garner BA, Naylor GJ, Baums IB, Schwartz MK, Kelley JL, Luikart G. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016;25:2967–77.

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach. J R Stat Soc B Methodol. 1995;57:289–300.

    Google Scholar 

  • Bensch S, Åkesson M. Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol. 2005;14:2899–914.

    Article  PubMed  CAS  Google Scholar 

  • Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS Genet. 2014;10:e1004412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernardo J. Experimental analysis of allocation in two divergent, natural salamander populations. Am Nat. 1994;143:14–38.

    Article  Google Scholar 

  • Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J Fish Biol. 2016;89:2519–56.

    Article  PubMed  CAS  Google Scholar 

  • Berven KA. The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution. 1982;36:962–83.

    PubMed  Google Scholar 

  • Bi K, Linderoth T, Vanderpool D, Good JM, Nielsen R, Moritz C. Unlocking the vault: next-generation museum population genomics. Mol Ecol. 2013;22:6018–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohling JH. Strategies to address the conservation threats posed by hybridization and genetic introgression. Biol Conserv. 2016;203:321–7.

    Article  Google Scholar 

  • Bohmann K, Evans A, Gilbert MTP, et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol. 2014;29:358–67.

    Article  PubMed  Google Scholar 

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol. 2007;21:697–708.

    Article  PubMed  Google Scholar 

  • Brauer CJ, Hammer MP, Beheregaray LB. Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol. 2016;25:5093–113.

    Article  PubMed  CAS  Google Scholar 

  • Buckley LB, Huey RB. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob Chang Biol. 2016;22:3829–42.

    Article  PubMed  Google Scholar 

  • Buehler D, Holderegger R, Brodbeck S, Schnyder E, Gugerli F. Validation of outlier loci through replication in independent data sets: a test on Arabis alpina. Ecol Evol. 2014;4:4296–306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell NR, Harmon SA, Narum SR. Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour. 2015;15:855–67.

    Article  PubMed  CAS  Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Catchen JM, Hohenlohe PA, Bernatchez L, Funk WC, Andrews KR, Allendorf FW. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Resour. 2017;17:362–5.

    Article  PubMed  CAS  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024–6.

    Article  PubMed  CAS  Google Scholar 

  • Christie MR, Marine ML, Fox SE, French RA, Blouin MS. A single generation of domestication heritably alters the expression of hundreds of genes. Nat Commun. 2016;7:10676.

    Google Scholar 

  • Cooke GM, Landguth EL, Beheregaray LB. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone. Evolution. 2014;68:1947–60.

    Article  PubMed  Google Scholar 

  • Coop G, Witonsky D, Rienzo AD, Pritchard JK. Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010;185:1411–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cosart T, Beja-Pereira A, Chen S, Ng SB, Shendure J, Luikart G. Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genomics. 2011;12:347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Creech TG, Epps CW, Landguth EL, Wehausen JD, Crowhurst RS, Holton B, Monello RJ. Simulating the spread of selection-driven genotypes using landscape resistance models for desert bighorn sheep. PLoS One. 2017;12:e0176960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat. 2006;168:486–99.

    Article  PubMed  Google Scholar 

  • Czypionka T, Krugman T, Altmüller J, Blaustein L, Steinfartz S, Templeton AR, Nolte AW. Ecological transcriptomics – a non-lethal sampling approach for endangered fire salamanders. Methods Ecol Evol. 2015;6:1417–25.

    Article  Google Scholar 

  • Daly C. Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol. 2006;26:707–21.

    Article  Google Scholar 

  • De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J. Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa. Mol Ecol. 2014;23:4709–21.

    Article  PubMed  CAS  Google Scholar 

  • De Mita S, Thuillet A-C, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Y. Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol. 2013;22:1383–99.

    Article  PubMed  Google Scholar 

  • de Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE. Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol. 2014;23:2006–19.

    Article  PubMed  Google Scholar 

  • de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I. Common garden experiments in the genomic era: new perspectives and opportunities. Heredity. 2016;116:249–54.

    Article  PubMed  Google Scholar 

  • Dimond JL, Roberts SB. Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change. Mol Ecol. 2016;25:1895–904.

    Article  PubMed  CAS  Google Scholar 

  • Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden ZA, Schwartz MK. The climate velocity of the contiguous United States during the 20th century. Glob Chang Biol. 2013;19:241–51.

    Article  PubMed  Google Scholar 

  • Dormann CF, Elith J, Bacher S, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46.

    Article  Google Scholar 

  • Dyer RJ. Is there such a thing as landscape genetics? Mol Ecol. 2015;24:3518–28.

    Article  PubMed  Google Scholar 

  • Early R, Sax DF. Analysis of climate paths reveals potential limitations on species range shifts. Ecol Lett. 2011;14:1125–33.

    Article  PubMed  Google Scholar 

  • Edmands S. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol. 2007;16:463–75.

    Article  PubMed  Google Scholar 

  • Epstein B, Jones M, Hamede R, et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat Commun. 2016;7:12684.

    Article  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. Annu Rev Ecol Evol Syst. 2009;40:481–501.

    Article  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P. Species detection using environmental DNA from water samples. Biol Lett. 2008;4:423–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick SW, Funk WC. Population genomics for genetic rescue. In: Hohenlohe PA, Rajora OP, editors. Population genomics: wildlife. Cham: Springer; 2018.

    Google Scholar 

  • Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett. 2015;18:1–16.

    Article  PubMed  Google Scholar 

  • Fitzpatrick BM, Johnson JR, Kump DK, Shaffer HB, Smith JJ, Voss SR. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders. BMC Evol Biol. 2009;9:176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban SM. Guidelines for using genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl. 2018;11:1035–52.

    Article  PubMed  Google Scholar 

  • Forester BR, DeChaine EG, Bunn AG. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers Distrib. 2013;19:1480–95.

    Article  Google Scholar 

  • Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol. 2018;27:2215–33.

    Article  PubMed  CAS  Google Scholar 

  • François O, Martins H, Caye K, Schoville SD. Controlling false discoveries in genome scans for selection. Mol Ecol. 2016;25:454–69.

    Article  PubMed  CAS  Google Scholar 

  • Frankham R. Conservation genetics. Annu Rev Genet. 1995;29:305–27.

    Article  PubMed  CAS  Google Scholar 

  • Frankham R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol. 2015;24:2610–8.

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Ralls K, et al. Genetic management of fragmented animal and plant populations. Oxford: Oxford University Press; 2017.

    Book  Google Scholar 

  • Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB. Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity. 2011;106:404–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuentes-Pardo AP, Ruzzante DE. Whole-genome sequencing approaches for conservation biology: advantages, limitations, and practical recommendations. Mol Ecol. 2017;26:5369–406.

    Article  PubMed  CAS  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk WC, Lovich RE, Hohenlohe PA, et al. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol Ecol. 2016;25:2176–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funk WC, Forester BR, Converse SJ, Darst C, Morey S. Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. Conserv Genet. 2018; https://doi.org/10.1007/s10592-018-1096-1.

  • Gardner JL, Amano T, Sutherland WJ, Clayton M, Peters A. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology. 2016;97:786–95.

    Article  PubMed  Google Scholar 

  • Garner BA, Hand BK, Amish SJ, et al. Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol. 2016;31:81–3.

    Article  PubMed  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    Article  PubMed  CAS  Google Scholar 

  • Grant BR, Grant PR. Evolution of Darwin’s finches caused by a rare climatic event. Proc R Soc B Biol. 1993;251:111–7.

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, et al. Predicting species distributions for conservation decisions. Ecol Lett. 2013;16:1424–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo B, Li Z, Merilä J. Population genomic evidence for adaptive differentiation in the Baltic Sea herring. Mol Ecol. 2016;25:2833–52.

    Article  PubMed  CAS  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA, Miller JM. Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv Biol. 2016;30:33–41.

    Article  PubMed  Google Scholar 

  • Hancock AM, Brachi B, Faure N, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334:83–6.

    Article  PubMed  CAS  Google Scholar 

  • Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol. 2015;30:161–8.

    Article  PubMed  Google Scholar 

  • Hand BK, Muhlfeld CC, Wade AA, et al. Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics. Mol Ecol. 2016;25:689–705.

    Article  PubMed  Google Scholar 

  • Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl. 2014;7:1008–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann SA, Schaefer HM, Segelbacher G. Genetic depletion at adaptive but not neutral loci in an endangered bird species. Mol Ecol. 2014;23:5712–25.

    Article  PubMed  Google Scholar 

  • Harvey MG, Smith BT, Glenn TC, Faircloth BC, Brumfield RT. Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Syst Biol. 2016;65:910–24.

    Article  PubMed  CAS  Google Scholar 

  • Hazen EL, Jorgensen S, Rykaczewski RR, et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat Clim Chang. 2013;3:234–8.

    Article  Google Scholar 

  • Hedrick PW, Fredrickson R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv Genet. 2010;11:615–26.

    Article  Google Scholar 

  • Hendry AP. Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity. 2013;111:456–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hess JE, Campbell NR, Close DA, Docker MF, Narum SR. Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol. 2013;22:2898–916.

    Article  PubMed  CAS  Google Scholar 

  • Hess JE, Campbell NR, Docker MF, et al. Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey. Mol Ecol Resour. 2015;15:187–202.

    Article  PubMed  CAS  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol. 2006;12:450–5.

    Article  Google Scholar 

  • Hoban S, Gaggiotti O, Bertorelle G. Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. Methods Ecol Evol. 2013;4:299–303.

    Article  Google Scholar 

  • Hoban S, Arntzen JA, Bruford MW, et al. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl. 2014;7:984–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffberg SL, Kieran TJ, Catchen JM, Devault A, Faircloth BC, Mauricio R, Glenn TC. RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol Ecol Resour. 2016;16:1264–78.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann A, Griffin P, Dillon S, et al. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim Chang Res. 2015;2:1–23.

    Article  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 2010;6:e1000862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G. Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour. 2011;11:117–22.

    Article  PubMed  Google Scholar 

  • Hohenlohe PA, Day MD, Amish SJ, et al. Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing. Mol Ecol. 2013;22:3002–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population genomics provides key insights in ecology and evolution. In: Rajora OP, editor. Population genomics concepts, approaches and applications. Cham: Springer; 2017.

    Google Scholar 

  • Holden ZA, Jolly W, Parson R, Warren A, Landguth EL, Abatzoglou J. TOPOFIRE: a system for monitoring insect and climate induced impacts on fire danger in complex terrain. Consortium for Integrated Climate Research in Western Mountains. 2013. http://topofire.dbs.umt.edu/topofire_v2/topofire_portal_v2.php.

  • Holderegger R, Herrmann D, Poncet B, et al. Land ahead: using genome scans to identify molecular markers of adaptive relevance. Plant Ecol Divers. 2008;1:273–83.

    Article  Google Scholar 

  • Holmes MW, Hammond TT, Wogan GOU, et al. Natural history collections as windows on evolutionary processes. Mol Ecol. 2016;25:864–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Houston RD, Taggart JB, Cézard T, et al. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics. 2014;15:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hykin SM, Bi K, McGuire JA. Fixing formalin: a method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS One. 2014;10:e0141579.

    Article  CAS  Google Scholar 

  • Ikeda DH, Max TL, Allan GJ, Lau MK, Shuster SM, Whitham TG. Genetically informed ecological niche models improve climate change predictions. Glob Chang Biol. 2017;23:164–76.

    Article  PubMed  Google Scholar 

  • Jay F, Manel S, Alvarez N, et al. Forecasting changes in population genetic structure of alpine plants in response to global warming. Mol Ecol. 2012;21:2354–68.

    Article  PubMed  Google Scholar 

  • Johnson WE, Onorato DP, Roelke ME, et al. Genetic restoration of the Florida panther. Science. 2010;329:1641–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston SE, McEwan JC, Pickering NK, et al. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol. 2011;20:2555–66.

    Article  PubMed  Google Scholar 

  • Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol. 2016;25:185–202.

    Article  PubMed  Google Scholar 

  • Jones MR, Forester BR, Teufel AI, et al. Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations. Evolution. 2013;67:3455–68.

    Article  PubMed  CAS  Google Scholar 

  • Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16:3955–69.

    Article  PubMed  CAS  Google Scholar 

  • Kardos M, Luikart G, Bunch R, et al. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol. 2015;24:5616–32.

    Article  PubMed  CAS  Google Scholar 

  • Karger DN, Conrad O, Böhner J, et al. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017;4:170122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.

    Article  Google Scholar 

  • Kovach RP, Hand BK, Hohenlohe PA, et al. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc R Soc B. 2016;283:20161380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lah L, Trense D, Benke H, et al. Spatially explicit analysis of genome-wide SNPs detects subtle population structure in a mobile marine mammal, the harbor porpoise. PLoS One. 2016;11:e0162792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lande R. Genetics and demography in biological conservation. Science. 1988;241:1455–60.

    Article  PubMed  CAS  Google Scholar 

  • Landguth EL, Schwartz MK. Evaluating sample allocation and effort in detecting population differentiation for discrete and continuously distributed individuals. Conserv Genet. 2014;15:981–92.

    Article  Google Scholar 

  • Landguth EL, Fedy BC, Oyler-McCance SJ, et al. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour. 2012;12:276–84.

    Article  Google Scholar 

  • Landguth E, Cushman SA, Balkenhol N. Simulation modeling in landscape genetics. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, editors. Landscape genetics. Hoboken: Wiley; 2015. p. 99–113.

    Chapter  Google Scholar 

  • Lasky JR, Marais D, L D, et al. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana. Mol Biol Evol. 2014;31:2283–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lasky JR, Upadhyaya HD, Ramu P, et al. Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv. 2015;1:e1400218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lasky JR, Forester BR, Reimherr M. Coherent synthesis of genomic associations with phenotypes and home environments. Mol Ecol Resour. 2018;18:91–106.

    Article  PubMed  CAS  Google Scholar 

  • Le Corre V, Kremer A. The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol. 2012;21:1548–66.

    Article  PubMed  Google Scholar 

  • Lea A, Altmann J, Alberts SC, Tung J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Mol Ecol. 2016;25:1681–96.

    Google Scholar 

  • Leempoel K, Duruz S, Rochat E, Widmer I, Orozco-terWengel P, Joost S. Simple rules for an efficient use of geographic information systems in molecular ecology. Front Ecol Evol. 2017;5:1–33.

    Article  Google Scholar 

  • Lindenmayer DB, Piggott MP, Wintle BA. Counting the books while the library burns: why conservation monitoring programs need a plan for action. Front Ecol Environ. 2013;11:549–55.

    Article  Google Scholar 

  • Lookingbill T, Urban D. Gradient analysis, the next generation: towards more plant-relevant explanatory variables. Can J For Res. 2005;35:1744–53.

    Article  Google Scholar 

  • Lotterhos KE, Whitlock MC. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol. 2015;24:1031–46.

    Article  PubMed  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2016;17:142–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lozier JD. Revisiting comparisons of genetic diversity in stable and declining species: assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Mol Ecol. 2014;23:788–801.

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, England P, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.

    Article  PubMed  CAS  Google Scholar 

  • Manel S, Perrier C, Pratlong M, Abi-Rached L, Paganini J, Pontarotti P, Aurelle D. Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol Ecol. 2016;25:170–84.

    Article  PubMed  CAS  Google Scholar 

  • Manthey JD, Moyle RG. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Mol Ecol. 2015;24:3628–38.

    Article  PubMed  CAS  Google Scholar 

  • Margules CR, Pressey RL. Systematic conservation planning. Nature. 2000;405:243–53.

    Article  PubMed  CAS  Google Scholar 

  • Massicotte R, Whitelaw E, Angers B. DNA methylation: a source of random variation in natural populations. Epigenetics. 2011;6:421–7.

    Article  PubMed  CAS  Google Scholar 

  • McCartney-Melstad E, Mount GG, Shaffer HB. Exon capture optimization in amphibians with large genomes. Mol Ecol Resour. 2016;16:1084–94.

    Article  PubMed  CAS  Google Scholar 

  • McKinney GJ, Larson WA, Seeb LW, Seeb JE. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on breaking RAD by Lowry et al., (2016). Mol Ecol Resour. 2017;17:356–61.

    Article  PubMed  CAS  Google Scholar 

  • McMahon BJ, Teeling EC, Höglund J. How and why should we implement genomics into conservation? Evol Appl. 2014;7:999–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl. 2014;7:1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikheyev AS, Tin MMY, Arora J, Seeley TD. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite. Nat Commun. 2015;6:7991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller CR, Waits LP. The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc Natl Acad Sci U S A. 2003;100:4334–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller JM, Poissant J, Hogg JT, Coltman DW. Genomic consequences of genetic rescue in an insular population of bighorn sheep (Ovis canadensis). Mol Ecol. 2012;21:1583–96.

    Article  PubMed  CAS  Google Scholar 

  • Moura AE, Kenny JG, Chaudhuri R, et al. Population genomics of the killer whale indicates ecotype evolution in sympatry involving both selection and drift. Mol Ecol. 2014;23:5179–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeau CP, Urban MC, Bridle JR. Coarse climate change projections for species living in a fine-scaled world. Glob Chang Biol. 2017;23:12–24.

    Article  PubMed  Google Scholar 

  • Narum SR, Campbell NR. Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genomics. 2015;16:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicotra AB, Beever EA, Robertson AL, Hofmann GE, O’Leary J. Assessing the components of adaptive capacity to improve conservation and management efforts under global change. Conserv Biol. 2015;29:1268–78.

    Article  PubMed  Google Scholar 

  • Norris LC, Main BJ, Lee Y, Collier TC, Fofana A, Cornel AJ, Lanzaro GC. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc Natl Acad Sci U S A. 2015;112:815–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Neil ST, Dzurisin JDK, Williams CM, et al. Gene expression in closely related species mirrors local adaptation: consequences for responses to a warming world. Mol Ecol. 2014;23:2686–98.

    Article  PubMed  CAS  Google Scholar 

  • Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol. 2013;22:5983–99.

    Article  PubMed  Google Scholar 

  • Ottewell KM, Bickerton DC, Byrne M, Lowe AJ. Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers Distrib. 2016;22:174–88.

    Article  Google Scholar 

  • Oyler JW, Ballantyne A, Jencso K, Sweet M, Running SW. Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. Int J Climatol. 2015;35:2258–79.

    Article  Google Scholar 

  • Oyler-McCance SJ, Fedy BC, Landguth EL. Sample design effects in landscape genetics. Conserv Genet. 2013;14:275–85.

    Article  Google Scholar 

  • Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for stacks. Methods Ecol Evol. 2017;8:1360–73.

    Article  Google Scholar 

  • Pavey SA, Gaudin J, Normandeau E, Dionne M, Castonguay M, Audet C, Bernatchez L. RAD sequencing highlights polygenic discrimination of habitat ecotypes in the panmictic American Eel. Curr Biol. 2015;25:1666–71.

    Article  PubMed  CAS  Google Scholar 

  • Peterman WE, Semlitsch RD. Fine-scale habitat associations of a terrestrial salamander: the role of environmental gradients and implications for population dynamics. PLoS One. 2013;8:e62184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters JL, Lavretsky P, DaCosta JM, Bielefeld RR, Feddersen JC, Sorenson MD. Population genomic data delineate conservation units in mottled ducks (Anas fulvigula). Biol Conserv. 2016;203:272–81.

    Article  Google Scholar 

  • Phillips BL, Brown GP, Shine R. Life-history evolution in range-shifting populations. Ecology. 2010;91:1617–27.

    Article  PubMed  Google Scholar 

  • Prince DJ, O’Rourke SM, Thompson TQ, Ali OA, Lyman HS, Saglam IK, Hotaling TJ, Spidle AP, Miller MR. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci Adv. 2017;3:e1603198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prunier JG, Kaufmann B, Fenet S, Picard D, Pompanon F, Joly P, Lena JP. Optimizing the trade-off between spatial and genetic sampling efforts in patchy populations: towards a better assessment of functional connectivity using an individual-based sampling scheme. Mol Ecol. 2013;22:5516–30.

    Article  PubMed  CAS  Google Scholar 

  • Ralph PL, Coop G. The role of standing variation in geographic convergent adaptation. Am Nat. 2015a;186:S5–S23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ralph PL, Coop G. Convergent evolution during local adaptation to patchy landscapes. PLoS Genet. 2015b;11:e1005630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Razgour O, Taggart JB, Manel S, et al. An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour. 2018;18:18–31.

    Article  PubMed  Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348–70.

    Article  PubMed  Google Scholar 

  • Rissler LJ. Union of phylogeography and landscape genetics. Proc Natl Acad Sci U S A. 2016;113:8079–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roffler GH, Amish SJ, Smith S, Cosart T, Kardos M, Schwartz MK, Luikart G. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate. Mol Ecol Resour. 2016;16:1147–64.

    Article  PubMed  CAS  Google Scholar 

  • Ruane S, Austin CC. Phylogenomics using formalin-fixed and 100+ year-old intractable natural history specimens. Mol Ecol Resour. 2017;17:1003–8.

    Article  PubMed  Google Scholar 

  • Ruegg K, Bay RA, Anderson EC, Saracco JF, Harrigan RJ, Whitfield M, Paxton EH, Smith TB, Coulson T. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol Lett. 2018;21:1085–96.

    Article  PubMed  Google Scholar 

  • Russello MA, Waterhouse MD, Etter PD, Johnson EA. From promise to practice: pairing non-invasive sampling with genomics in conservation. PeerJ. 2015;3:e1106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santure AW, De Cauwer I, Robinson MR, Poissant J, Sheldon BC, Slate J. Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population. Mol Ecol. 2013;22:3949–62.

    Article  PubMed  Google Scholar 

  • Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14:807–20.

    Article  PubMed  CAS  Google Scholar 

  • Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS. Population diversity and the portfolio effect in an exploited species. Nature. 2010;465:609–12.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS. Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol. 2007;22:25–33.

    Article  PubMed  Google Scholar 

  • Selkoe KA, Scribner KT, Galindo HM. Waterscape genetics – applications of landscape genetics to rivers, lakes, and seas. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, editors. Landscape genetics. Hoboken: Wiley; 2015. p. 220–46.

    Chapter  Google Scholar 

  • Sgro C, Lowe A, Hoffmann A. Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl. 2011;4:326–37.

    Article  PubMed  Google Scholar 

  • Sork V, Aitken S, Dyer R, Eckert AJ, Legendre P, Neale D. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes. 2013;9:901.

    Article  Google Scholar 

  • Steane DA, Potts BM, McLean E, Prober SM, Stock WD, Vaillancourt RE, Byrne M. Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol Ecol. 2014;23:2500–13.

    Article  PubMed  Google Scholar 

  • Stelkens RB, Brockhurst MA, Hurst GDD, Greig D. Hybridization facilitates evolutionary rescue. Evol Appl. 2014;7:1209–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP. Landscape genetics: where are we now? Mol Ecol. 2010;19:3496–514.

    Article  PubMed  Google Scholar 

  • Storfer A, Antolin MF, Manel S, Epperson BK, Scribner KT. Genomic approaches in landscape genetics. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, editors. Landscape genetics. Hoboken: Wiley; 2015. p. 149–64.

    Chapter  Google Scholar 

  • Storz JF. Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol. 2005;14:671–88.

    Article  PubMed  CAS  Google Scholar 

  • Stucki S, Orozco-terWengel P, Forester BR, et al. High performance computation of landscape genomic models including local indicators of spatial association. Mol Ecol Resour. 2017;17:1072–89.

    Article  PubMed  CAS  Google Scholar 

  • Swaegers J, Mergeay J, Van Geystelen A, Therry L, Larmuseau MHD, Stoks R. Neutral and adaptive genomic signatures of rapid poleward range expansion. Mol Ecol. 2015;24:6163–76.

    Article  PubMed  CAS  Google Scholar 

  • Szulkin M, Gagnaire P-A, Bierne N, Charmantier A. Population genomic footprints of fine-scale differentiation between habitats in Mediterranean blue tits. Mol Ecol. 2016;25:542–58.

    Article  PubMed  CAS  Google Scholar 

  • Therkildsen NO, Palumbi SR. Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Mol Ecol Resour. 2017;17:194–208.

    Article  PubMed  CAS  Google Scholar 

  • Thomas L, Palumbi SR. The genomics of recovery from coral bleaching. Proc R Soc B. 2017;284:20171790.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiffin P, Ross-Ibarra J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol. 2014;29:673–80.

    Article  PubMed  Google Scholar 

  • Todd EV, Black MA, Gemmell NJ. The power and promise of RNA-seq in ecology and evolution. Mol Ecol. 2016;25:1224–41.

    Article  PubMed  CAS  Google Scholar 

  • Toews DPL, Taylor SA, Vallender R, Brelsford A, Butcher BG, Messer PW, Lovette IJ. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr Biol. 2016;26:2313–8.

    Article  PubMed  CAS  Google Scholar 

  • Trucchi E, Mazzarella AB, Gilfillan GD, Lorenzo MT, Schönswetter P, Paun O. BsRADseq: screening DNA methylation in natural populations of non-model species. Mol Ecol. 2016;25:1697–713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Gurp TP, Wagemaker NCAM, Wouters B, Vergeer P, Ouborg JNJ, Verhoeven KJF. epiGBS: reference-free reduced representation bisulfite sequencing. Nat Methods. 2016;13:322–4.

    Article  PubMed  CAS  Google Scholar 

  • Vasseur DA, DeLong JP, Gilbert B, et al. Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc Lond B Biol. 2014;281:20132612.

    Google Scholar 

  • Verhoeven KJF, vonHoldt BM, Sork VL. Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol. 2016;25:1631–8.

    Article  PubMed  Google Scholar 

  • Vilà C, Sundqvist A-K, Flagstad Ø, et al. Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B Biol Sci. 2003;270:91–7.

    Article  Google Scholar 

  • vonHoldt BM, Pollinger JP, Earl DA, et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 2011;21:1294–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waits LP, Cushman SA, Spear SF. Applications of landscape genetics to connectivity research in terrestrial animals. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, editors. Landscape genetics. Hoboken: Wiley; 2015. p. 199–219.

    Chapter  Google Scholar 

  • Wang IJ, Bradburd GS. Isolation by environment. Mol Ecol. 2014;23:5649–62.

    Article  PubMed  Google Scholar 

  • Wang T, Hamann A, Spittlehouse D, Carroll C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One. 2016;11:e0156720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M. Exome sequencing: current and future perspectives. G3: Genes Genom Genet. 2015;5:1543–50.

    Article  Google Scholar 

  • Wayne RK, Shaffer HB. Hybridization and endangered species protection in the molecular era. Mol Ecol. 2016;25:2680–9.

    Article  PubMed  Google Scholar 

  • Weeks AR, Sgro CM, Young AG, et al. Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl. 2011;4:709–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Welbergen JA, Klose SM, Markus N, Eby P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc Lond B Biol. 2008;275:419–25.

    Google Scholar 

  • Wenzel MA, Douglas A, James MC, Redpath SM, Piertney SB. The role of parasite-driven selection in shaping landscape genomic structure in red grouse (Lagopus lagopus scotica). Mol Ecol. 2016;25:324–41.

    Article  PubMed  CAS  Google Scholar 

  • Whipple AV, Holeski LM. Epigenetic inheritance across the landscape. Front Genet. 2016;7:189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. Genetic rescue to the rescue. Trends Ecol Evol. 2015;30:42–9.

    Article  PubMed  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA. Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst. 2006;37:433–58.

    Article  Google Scholar 

  • Wood JLA, Yates MC, Fraser DJ. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol Appl. 2016;9:640–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright B, Morris K, Grueber CE, et al. Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics. 2015;16:791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration-selection balance. Evolution. 2011;65:1897–911.

    Article  PubMed  Google Scholar 

  • Yoder JB, Tiffin P. Effects of gene action, marker density, and time since selection on the performance of landscape genomic scans of local adaptation. J Hered. 2017;109:16–28.

    Article  PubMed  Google Scholar 

  • Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P. Genomic signature of adaptation to climate in Medicago truncatula. Genetics. 2014;196:1263–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Kim Andrews and Paul Hohenlohe for helpful comments that improved the chapter. This work was supported in part by funds provided by National Science Foundation grants EF-1442597 and DEB-1340852 to ELL and BRF, NASA grant NNX14AC91G to ELL, and National Science Foundation grant DEB-1639014 and NASA grant NNX14AB84G to BKH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenna R. Forester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forester, B.R., Landguth, E.L., Hand, B.K., Balkenhol, N. (2018). Landscape Genomics for Wildlife Research. In: Hohenlohe, P.A., Rajora, O.P. (eds) Population Genomics: Wildlife. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_56

Download citation

  • DOI: https://doi.org/10.1007/13836_2018_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63488-9

  • Online ISBN: 978-3-030-63489-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics