Skip to main content

Population Genomics Provides Key Insights in Ecology and Evolution

  • Chapter
  • First Online:
Book cover Population Genomics

Part of the book series: Population Genomics ((POGE))

Abstract

Population genomic tools have revolutionized many aspects of biology, as detailed throughout the chapters of this volume. In particular, population genomics has provided key insights into ecological and evolutionary processes in natural and managed populations. These studies address a wide range of questions, including demography, phylogeny, genetics of ecologically relevant traits, and adaptation. They have also facilitated the conservation and management of biodiversity and harvested populations. Rather than exhaustively document the applications of population genomics in ecology and evolution, in this chapter we provide perspectives on a few key issues confronting researchers seeking to use population genomic tools in non-model systems. A wide variety of molecular and computational genomic approaches are available and have been used in ecological and evolutionary studies. There is no single best approach; rather, the genomic approach used should be tailored to best address the particular study goals and guided by the biology of the system. A large number of trade-offs, costs, and benefits distinguish genomic approaches, which we discuss below. To illustrate these issues, we focus on several published case studies and assess how the research questions were addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR. RAD capture (rapture): flexible and efficient sequence-based genotyping. Genetics. 2016;202:389–400.

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW. Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol. 2017;26:420–30.

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697–709.

    Article  CAS  PubMed  Google Scholar 

  • Amish SJ, Hohenlohe PA, Painter S, Leary RF, Muhlfeld C, Allendorf FW, Luikart G. RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays. Mol Ecol Res. 2012;12:653–60.

    Article  CAS  Google Scholar 

  • Anderson EC. Assessing the power of informative subsets of loci for population assignment: standard methods are upwardly biased. Mol Ecol Res. 2010;10:701–10.

    Article  CAS  Google Scholar 

  • Andrews KR, Luikart G. Recent novel approaches for population genomics data analysis. Mol Ecol. 2014;23:1661–7.

    Article  PubMed  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avise JC. Molecular markers, natural history and evolution. New York: Chapman & Hall; 1994.

    Book  Google Scholar 

  • Barrett CF, Bacon CD, Antonelli A, Cano A, Hofmann T. An introduction to plant phylogenomics with a focus on palms. Bot J Linn Soc. 2016;182:234–55.

    Article  Google Scholar 

  • Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science. 2018;359:83–6.

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA. Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B. 1996;263:1619–26.

    Article  Google Scholar 

  • Benestan L, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L. RAD-genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species; the American lobster (Homarus americanus). Mol Ecol. 2015;24:3299–315.

    Article  PubMed  Google Scholar 

  • Benestan LM, Ferchaud AL, Hohenlohe PA, Garner BA, Naylor GJP, Baums IB, et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016;25:2967–77.

    Article  PubMed  Google Scholar 

  • Beraldi D, McRae AF, Gratten J, Slate J, Visscher PM, Pemberton JM. Mapping quantitative trait loci underlying fitness-related traits in a free-living sheep population. Evolution. 2007;61:1403–16.

    Article  PubMed  Google Scholar 

  • Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J Fish Biol. 2016;89:2519–56.

    Article  CAS  PubMed  Google Scholar 

  • Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657.

    Article  PubMed  Google Scholar 

  • Black WC, Baer CF, Antolin MF, DuTeau NM. Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol. 2001;46:441–69.

    Article  CAS  PubMed  Google Scholar 

  • Boyer MC, Muhlfeld CC, Allendorf FW. Rainbow trout (Oncorhynchus mykiss) invasion and the spread of hybridization with native westslope cutthroat trout (Oncorhynchus clarkia lewisii). Can J Fish Aquat Sci. 2008;65:658–69.

    Article  Google Scholar 

  • Bragg JG, Potter S, Bi K, Moritz C. Exon capture phylogenomics: efficacy across scales of divergence. Mol Ecol Resour. 2016;16:1059–68.

    Article  CAS  PubMed  Google Scholar 

  • Campbell NR, Harmon SA, Narum SR. Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Res. 2015;15:855–67.

    Article  CAS  Google Scholar 

  • Catchen J, Hohenlohe PA, Bernatchez L, Funk WC, Andrews KR, Allendorf FW. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Res. 2017;17:362–5.

    Article  CAS  Google Scholar 

  • Chain FJJ, Feulner PGD, Panchal M, Eizaguirre C, Samonte IE, et al. Extensive copy-number variation of young genes across stickleback populations. PLoS Genet. 2014;10:e1004830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan CX, Ragan MA. Next-generation phylogenomics. Biol Direct. 2013;8:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun. 2013;4:2433.

    Article  PubMed  CAS  Google Scholar 

  • Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010;185:1411–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corander J, Majander KK, Cheng L, Merila J. High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol. 2013;22:2931–40.

    Article  CAS  PubMed  Google Scholar 

  • Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30:1187–9.

    Article  CAS  PubMed  Google Scholar 

  • Cresko WA, Amores A, Wilson C, Murphy J, Currey M, Phillips P, Bell MA, Kimmel CB, Postlethwait JH. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc Natl Acad Sci U S A. 2004;101:6050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM, et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature. 2002;418:544–8.

    Article  CAS  PubMed  Google Scholar 

  • De Mita S, Thuillet A-C, Gay L, Ahmadi N, Manel S, Ronfort J, et al. Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol. 2013;22:1383–99.

    Article  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (N e) from genetic data. Mol Ecol Res. 2014;14:209–14.

    Article  CAS  Google Scholar 

  • Dunning AM, Durocher F, Healey CS, Teare MD, McBride SE, Carlomagno F, et al. The extent of linkage disequilibrium in four populations with distinct demographic histories. Am J Human Genet. 2000;67:1544–54.

    Article  CAS  Google Scholar 

  • Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. Reticulation, divergence, and the phylogeography–phylogenetics continuum. Proc Natl Acad Sci. 2016;113:8025–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011;107(1):11.

    Article  Google Scholar 

  • Elbers JP, Clostio RW, Taylor SS. Population genetic inferences using immune gene SNPs mirror patterns inferred by microsatellites. Mol Ecol Resour. 2017;17:481–91.

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature. 2012;491:756–60.

    Article  CAS  PubMed  Google Scholar 

  • Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci U S A. 2010;107:16196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein B, Jones M, Hamede R, Hendricks S, McCallum H, Murchison EP, et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat Commun. 2016;7:12684.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferchaud AL, Hansen MM. The impact of selection, gene flow and demographic history on heterogeneous genomic divergence: three-spine sticklebacks in divergent environments. Mol Ecol. 2016;25:238–59.

    Article  CAS  PubMed  Google Scholar 

  • Feulner PGD, Chain FJJ, Panchal M, Huang Y, Eizaguirre C, Kalbe M, et al. Genomics of divergence along a continuum of parapatric population differentiation. PLoS Genet. 2015;11:e1004966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, et al. Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics. 2017;18:69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher RA. The genetic theory of natural selection. New York: Dover; 1958.

    Google Scholar 

  • Fontaine MC, Snirc A, Frantzis A, Koutrakis E, Öztürk B, Öztürk AA, Austerliz F. History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data. Proc Natl Acad Sci U S A. 2012;109:E2569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol. 2016;25:104–20.

    Article  CAS  PubMed  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011;7:e1002355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk WC, Lovich RE, Hohenlohe PA, Hofman CA, Morrison SA, Sillett TS, et al. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol Ecol. 2016;25:2176–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT, Miller KM, et al. Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol. 2015;31:81–2.

    Article  PubMed  Google Scholar 

  • Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5:e1000695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halverson A. An entirely synthetic fish: how rainbow trout beguiled America and overran the world. New Haven: Yale University Press; 2010.

    Google Scholar 

  • Hancock AM, Witonsky DB, Alkorta-Aranburu G, Beall CM, Gebremedhin A, Sukernik R, et al. Adaptations to climate-mediated selective pressures in humans. PLoS Genet. 2011;7:e1001375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hand BK, Hether TD, Kovach RP, Muhlfeld CC, Amish SJ, Boyer MC, O’Rourke SM, Miller MR, Lowe WH, Hohenlohe PA, Luikart G. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing. Curr Zool. 2015;61:146–54.

    Article  Google Scholar 

  • Hand BK, Muhlfeld CC, Wade AA, Kovach RP, Whited DC, Narum SR, Matala AP, Ackerman MW, Garner BA, Kimball JS, Stanford JA, Luikart G. Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics. Mol Ecol. 2016;25:689–705.

    Article  PubMed  Google Scholar 

  • Hermisson J. Who believes in whole-genome scans for selection? Heredity. 2009;103:283–4.

    Article  CAS  PubMed  Google Scholar 

  • Herrera S, Shank TM. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol Phylogenet Evol. 2016;100:70–9.

    Article  PubMed  Google Scholar 

  • Hess JE, Campbell NR, Close DA, Docker MF, Narum SR. Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol. 2013;22:2898–916.

    Article  CAS  PubMed  Google Scholar 

  • Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188:379–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman JI, Simpson F, David P, Rijks JM, Kuiken T, Thorne MAS, et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proc Natl Acad Sci U S A. 2014;111:3775–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohenlohe PA, Phillips PC, Cresko WA. Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci. 2010;171:1059–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G. Next-generation RAD sequencing identified thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Res. 2011;11:117–22.

    Article  Google Scholar 

  • Hohenlohe PA, Day MD, Amish SJ, Miller MR, Kamps-Hughes N, Boyer MC, Muhlfeld CC, Allendorf FW, Johnson EA, Luikart G. Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing. Mol Ecol. 2013;22:3002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday JA, Hallerman EM, Haak DC. Genotyping and sequencing technologies in population genetics and genomics. Cham: Springer; 2018.

    Book  Google Scholar 

  • Jarvis ED. Perspectives from the avian phylogenomics project: questions that can be answered with sequencing all genomes of a vertebrate class. Annu Rev Anim Biosci. 2016;4:45–59.

    Article  PubMed  Google Scholar 

  • Jeffries DL, Copp GH, Lawson Handley L, Olsén KH, Sayer CD, Hänfling B. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Mol Ecol. 2016;25:2997–3018.

    Article  PubMed  Google Scholar 

  • Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol. 2016;25:185–202.

    Article  PubMed  Google Scholar 

  • Jones FC, Grabherr MG, Chan YF, Russell P, Maucell E, Johnson J. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joost S, Bonin A, Bruford W, Després CC, Erhardt G, Taberlet P. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16:3955–69.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser SA, Taylor SA, Chen N, Sillett TS, Bondra ER, Webster MS. A comparative assessment of SNP and microsatellite markers for assigning parentage in a socially monogamous bird. Mol Ecol Resour. 2016;17:183–93.

    Article  PubMed  CAS  Google Scholar 

  • Kardos M, Luikart G, Allendorf FW. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity. 2015;115:63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of inbreeding depression in the wild. Evol Appl. 2016;9:1205–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM, Sivasundar A, et al. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Mol Ecol. 2013;22:2848–63.

    Article  CAS  PubMed  Google Scholar 

  • Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1983.

    Book  Google Scholar 

  • Kovach RP, Muhlfeld CC, Boyer MC, Lowe WH, Allendorf FW, Luikart G. Dispersal and selection mediate hybridization between a native and invasive species. Proc R Soc B. 2015;282:20142454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC, Neville HH, Muhlfeld CC, Amish SJ, Carim K, Narum SR, Lowe WH, Allendorf FW, Luikart G. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc R Soc B. 2016;283:20161380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landguth EL, Balkenhol N. Relative sensitivity of neutral versus adaptive genetic data for assessing population differentiation. Conserv Genet. 2012;13:1421–6.

    Article  Google Scholar 

  • Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl. 2014;7:355–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leaché AD, Chavez AS, Jones LN, Grummer JA, Gottscho AD, Linkem CW. Phylogenomics of Phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing. Genome Biol Evol. 2015;7:706–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • LeCorre V, Kremer A. The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol. 2012;21:1548–66.

    Article  Google Scholar 

  • Leroy T, Roux C, Villate L, Boldénès C, Romiguier J, Paiva JAP, et al. Extensive recent secondary contacts between four European white oak species. New Phytol. 2017;214:865–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin RC. Genetic basis of evolutionary change. New York: Columbia University Press; 1974.

    Google Scholar 

  • Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973;74:175–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nat Genet. 2011;475:493–6.

    CAS  Google Scholar 

  • Limborg MT, Helyar SJ, DeBruyn M, Taylor MI, Nielsen EE, Ogden R, Carvalho GR, Bekkevold D. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol. 2012;21:3686–703.

    Article  CAS  PubMed  Google Scholar 

  • Lind BM, Friedline CJ, Wegrzyn JL, Maloney PE, Vogler DR, Neale DB, Eckert AJ. Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. Mol Ecol. 2017;26:3168–85.

    Article  PubMed  Google Scholar 

  • Linløkken AN, Haugen TO, Mathew PK, Johansen W, Lien S. Comparing estimates of number of breeders Nb based on microsatellites and single nucleotide polymorphism of three groups of brown trout (Salmo trutta L.). Fish Manag Ecol. 2016;23:152–60.

    Article  Google Scholar 

  • Liu J, Shikano T, Leinonen T, Cano JM, Li M-H, Merilä J. Identification of major and minor QTL for ecologically important morphological traits in three-spined sticklebacks (Gasterosteus aculeatus). G3 Genes Genomes Genet. 2014;4:595–604.

    Google Scholar 

  • Loh P-R, Lipson M, Patterson N, Moorjani P, Pickrell JK, Reich D, Berger B. Inferring admixture histories of human populations using linkage disequilibrium. Genetics. 2013;193:1233–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, et al. Breaking RAD: an evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2016;17:142–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population genomics. Cham: Springer; 2018.

    Google Scholar 

  • Malenfant R, Coltman DW, Davis CS. Design of a 9K Illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour. 2015;15:587–600.

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24:133–41.

    Article  CAS  PubMed  Google Scholar 

  • Matala AP, Ackerman MW, Campbell MR, Narum SR. Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes. Evol Appl. 2014;7:682–701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazet O, Rodríguez W, Grusea S, Boitard S, Chikhi L. On the importance of being structured: instantaneous coalescence rates and a re-evaluation of human evolution. Heredity. 2016;116:362–71.

    Article  CAS  PubMed  Google Scholar 

  • McCartney-Melstad E, Mount GG, Shaffer HB. Exon capture optimization in amphibians with large genomes. Mol Ecol. 2016;16:1084–94.

    Article  CAS  Google Scholar 

  • McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol. 2013;66:526–38.

    Article  CAS  PubMed  Google Scholar 

  • Mckinney GJ, Larson WA, Seeb LW, Seeb JE. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on breaking RAD by Lowry et al. (2016). Mol Ecol Resour. 2017;17:356–61.

    Article  CAS  PubMed  Google Scholar 

  • McManus KF, Kelley JL, Song S, Veeramah KR, Woerner AE, Stevison LS, et al. Inference of gorilla demographic and selective history from whole-genome sequence data. Mol Biol Evol. 2016;32:600–12.

    Article  CAS  Google Scholar 

  • Milano I, Babbucci M, Cariani A, Atanassova M, Bekkevold D, Carvalho GR, et al. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol Ecol. 2014;23:118–35.

    Article  PubMed  Google Scholar 

  • Miller MR, Brunelli JP, Wheeler PA, Liu S, Rexroad CE, Palti Y, et al. A conserved haplotype controls parallel adaptation in geographically distant salmonid populations. Mol Ecol. 2012;21:237–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morin PA, Parsons KM, Archer FI, Ávila-Arcos MC, Barrett-Lennard LG, Dalla Rosa L, et al. Geographic and temporal dynamics of a global radiation and diversification in the killer whale. Mol Ecol. 2015;24:3964–79.

    Article  PubMed  Google Scholar 

  • Moritz C, Hillis DM. Molecular systematics: context and controversies. In: Hillis DM, Moritz C, Mable BK, editors. Molecular systematics. 2nd ed. Sunderland: Sinauer; 1996. p. 1–16.

    Google Scholar 

  • Moura AE, Kenny JG, Chaudhuri R, Hughes MA, Welch AJ, Reisinger RR, et al. Population genomics of the killer whale indicates ecotype evolution in sympatry involving both selection and drift. Mol Ecol. 2014;23:5179–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhlfeld CC, Kalinowski ST, McMahon TE, Taper ML, Painter S, Leary RF, Allendorf FW. Hybridization rapidly reduces fitness of a native trout in the wild. Biol Lett. 2009;5:328–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF, et al. Invasive hybridization in a threatened species is accelerated by climate change. Nat Clim Change. 2014;4:620–4.

    Article  Google Scholar 

  • Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    Article  CAS  PubMed  Google Scholar 

  • Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol. 2016;25:1058–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeau NJ, Ruiz M, Salazar P, Counterman B, Medina JA, Ortiz-Zuazaga H, et al. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res. 2014;24:1316–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazareno AG, Bemmels JB, Dick CW, Lohmann LG. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour. 2017;17:1136–47.

    Article  CAS  PubMed  Google Scholar 

  • Nicolle D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus – Myrtaceae), with special reference to the obligate seeders. Aust J Bot. 2006;54:391–407.

    Article  Google Scholar 

  • Oswald JA, Overcast I, Mauck WM, Anderson MJ, Smith BT. Isolation with asymmetric gene flow during the nonsynchronous divergence of dry forest birds. Mol Ecol. 2017;26:1386–400.

    Article  CAS  PubMed  Google Scholar 

  • Palsbøll PJ, Bérubé M, Allendorf FW. Identification of management units using population genetic data. Trends Ecol Evol. 2007;22:11–6.

    Article  PubMed  Google Scholar 

  • Park L. Effective population size of current human population. Genet Res. 2011;93:105–14.

    Article  Google Scholar 

  • Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puckett EE, Eggert LS. Comparison of SNP and microsatellite genotyping panels for spatial assignment of individuals to natal range: a case study using the American black bear (Ursus americanus). Biol Conserv. 2016;193:86–93.

    Article  Google Scholar 

  • Rajora OP, Eckert AJ, Zinck JWR. Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One. 2016;11:e0158691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ree RH, Hipp AL. Inferring phylogenetic history from restriction site associated DNA (RADseq). In: Hörandl E, Appelhans MS, editors. Next-generation sequencing in plant systematics. Königstein: International Association for Plant Taxonomy, IAPT; 2015. p. 1–24.

    Google Scholar 

  • Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, et al. Linkage disequilibrium in the human genome. Nature. 2001;411:199–204.

    Article  CAS  PubMed  Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348–70.

    Article  PubMed  Google Scholar 

  • Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, Vonholdt BM, Marsden CD, et al. Genomic flatlining in the endangered island fox. Curr Biol. 2016;26(9):1183.

    Article  CAS  PubMed  Google Scholar 

  • Rougement Q, Gagnaire P-A, Perrier C, Genthon C, Besnard A-L, Launey S, Evanno G. Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. Mol Ecol. 2016;26:142–62.

    Article  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, et al. Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc. 2011;5:P54.

    Article  PubMed Central  Google Scholar 

  • Santure AW, De Cauwer I, Robinson MR, Poissant J, Sheldon BC, Slate J. Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population. Mol Ecol. 2013;22:3949–62.

    Article  PubMed  Google Scholar 

  • Schield DR, Adams RH, Card DC, Perry BW, Pasquesi GM, Jezkova T, et al. Insight into the roles of selection in speciation from genomic patterns of divergence and introgression in secondary contact in venomous rattlesnakes. Ecol Evol. 2017;7:3951–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S. Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst. 2012;43:23–43.

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett. 2006;9:615–29.

    Article  PubMed  Google Scholar 

  • Slate J, Visscher PM, MacGregor S, Stevens D, Tate ML, Pemberton JM. A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics. 2002;162:1863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurgin LG, Wright DJ, van der Velde M, Collar NJ, Komdeur J, Burke T, Richardson DS. Museum DNA reveals the demographic history of the endangered Seychelles warbler. Evol Appl. 2014;7:1134–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steane DA, Potts BM, McLean E, Prober SM, Stock WD, Vaillancourt RE, et al. Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol Ecol. 2014;23:2500–13.

    Article  PubMed  Google Scholar 

  • Steane DA, Potts BM, McLean E, Collins L, Prober SM, Stock WD, Vaillancourt RE, Byrne M. Genome-wide scans reveal cryptic population structure in a dry-adapted eucalypt. Tree Genet Genomes. 2015;11:33.

    Article  Google Scholar 

  • Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet. 2017;49:303–9.

    Article  CAS  PubMed  Google Scholar 

  • Therkildsen NO, Palumbi SR. Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Mol Ecol Resour. 2017;17:194–208.

    Article  CAS  PubMed  Google Scholar 

  • Tiffin P, Ross-Ibarra J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol. 2014;29:673–80.

    Article  PubMed  Google Scholar 

  • Vargas OM, Ortiz EM, Simpson BB. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytol. 2017;214:1736–50.

    Article  CAS  PubMed  Google Scholar 

  • Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, et al. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol. 2013;22:787–98.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TA, Perkins SE, Heckel G, Searle JB. Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol. 2013;22:2971–85.

    Article  CAS  PubMed  Google Scholar 

  • Whitlock MC, Lotterhos KE. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of F ST. Am Nat. 2015;186:S24–36.

    Article  PubMed  Google Scholar 

  • Wright S. Evolution and the genetics of populations. Chicago: University of Chicago Press; 1978.

    Google Scholar 

Download references

Acknowledgments

PAH and KRA received support from NSF grant DEB-1316549. BKH was partially supported by funds from NSF grant DOB-1639014 and NASA NNX14AB84G. KRA was supported by the University of Idaho College of Natural Resources, USA. This is PMEL contribution number 4750 and Joint Institute for the Study of the Atmosphere and Ocean (JISAO) and NOAA Cooperative Agreement and NA15OAR4320063, contribution number 2018-0135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Hohenlohe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hohenlohe, P.A., Hand, B.K., Andrews, K.R., Luikart, G. (2018). Population Genomics Provides Key Insights in Ecology and Evolution. In: Rajora, O. (eds) Population Genomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_20

Download citation

Publish with us

Policies and ethics