Skip to main content

Alkaline Active Hemicellulases

  • Chapter
  • First Online:
Book cover Alkaliphiles in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 172))

Abstract

Xylan and mannan are the two most abundant hemicelluloses, and enzymes that modify these polysaccharides are prominent hemicellulases with immense biotechnological importance. Among these enzymes, xylanases and mannanases which play the vital role in the hydrolysis of xylan and mannan, respectively, attracted a great deal of interest. These hemicellulases have got applications in food, feed, bioethanol, pulp and paper, chemical, and beverage producing industries as well as in biorefineries and environmental biotechnology. The great majority of the enzymes used in these applications are optimally active in mildly acidic to neutral range. However, in recent years, alkaline active enzymes have also become increasingly important. This is mainly due to some benefits of utilizing alkaline active hemicellulases over that of neutral or acid active enzymes. One of the advantages is that the alkaline active enzymes are most suitable to applications that require high pH such as Kraft pulp delignification, detergent formulation, and cotton bioscouring. The other benefit is related to the better solubility of hemicelluloses at high pH. Since the efficiency of enzymatic hydrolysis is often positively correlated to substrate solubility, the hydrolysis of hemicelluloses can be more efficient if performed at high pH. High pH hydrolysis requires the use of alkaline active enzymes. Moreover, alkaline extraction is the most common hemicellulose extraction method, and direct hydrolysis of the alkali-extracted hemicellulose could be of great interest in the valorization of hemicellulose. Direct hydrolysis avoids the time-consuming extensive washing, and neutralization processes required if non-alkaline active enzymes are opted to be used. Furthermore, most alkaline active enzymes are relatively active in a wide range of pH, and at least some of them are significantly or even optimally active in slightly acidic to neutral pH range. Such enzymes can be eligible for non-alkaline applications such as in feed, food, and beverage industries.

This chapter largely focuses on the most important alkaline active hemicellulases, endo-β-1,4-xylanases and β-mannanases. It summarizes the relevant catalytic properties, structural features, as well as the real and potential applications of these remarkable hemicellulases in textile, paper and pulp, detergent, feed, food, and prebiotic producing industries. In addition, the chapter depicts the role of these extremozymes in valorization of hemicelluloses to platform chemicals and alike in biorefineries. It also reviews hemicelluloses and discusses their biotechnological importance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBM:

Carbohydrate-binding module

DP:

Degree of polymerization

EC:

Enzyme Commission

GH:

Glycoside hydrolase

ISO:

International Organization for Standardization

MOS:

Mannooligosaccharides

PDB:

Protein Data Bank

PHA:

Polyhydroxyalkanoate

PHB:

Polyhydroxybutyrate

XOS:

Xylooligosaccharides

References

  1. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    CAS  PubMed  Google Scholar 

  2. Burlacu A, Cornea CP, Israel-Roming F (2016) Microbial xylanase: a review. Sci Bull Ser F Biotechnol 20:335–342

    Google Scholar 

  3. Li X, Chang SH, Liu R (2018) Industrial applications of cellulases and hemicellulases. In: Fang X, Qu Y (eds) Fungal cellulolytic enzymes. Springer, Singapore

    Google Scholar 

  4. Mamo G, Faryar R, Nordberg Karlsson E (2013) Microbial glycoside hydrolases for biomass utilization in biofuels application. In: Gupta VK, Tuhoy MG (eds) Biofuel technologies: recent developments. Springer, Berlin, pp 171–188

    Google Scholar 

  5. Horváth IT (2018) Introduction: sustainable chemistry. Chem Rev 118:369–371

    PubMed  Google Scholar 

  6. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    CAS  PubMed  Google Scholar 

  7. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    CAS  Google Scholar 

  8. Kohli K, Prajapati R, Sharma BK (2019) Bio-based chemicals from renewable biomass for integrated biorefineries. Energies 12:233

    CAS  Google Scholar 

  9. Roddy DJ (2013) Biomass in a petrochemical world. Interface Focus 3:20120038. https://doi.org/10.1098/rsfs.2012.0038

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ravella SR, Gallagher J, Fish S, Prakasham RS (2012) Overview on commercial production of xylitol, economic analysis and market trends. In: da Silva S, Chandel A (eds) D-xylitol. Springer, Berlin, pp 291–306

    Google Scholar 

  11. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56:174–187

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    CAS  PubMed  Google Scholar 

  13. Srivastava P, Appu Rao AR, Kapoor M (2014) Structural insights into the thermal stability of endo-mannanase belonging to family 26 from Bacillus sp. CFR1601. FASEB J 28:580.2

    Google Scholar 

  14. Suurnäkki A, Tenkanen M, Buchert J, Viikari L (1997) Hemicellulases in the bleaching of chemical pulps. Adv Biochem Eng Biotechnol 57:261–287

    PubMed  Google Scholar 

  15. Guo W, Sheng J, Zhao H, Feng X (2016) Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb Cell Factories 15:24. https://doi.org/10.1186/s12934-016-0423-9

    Article  CAS  Google Scholar 

  16. Kim SJ, Sim HJ, Kim JW, Lee YG, Park YC, Seo JH (2017) Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Bioresour Technol 245(Pt B):1551–1557

    CAS  PubMed  Google Scholar 

  17. Rodrussamee N, Sattayawat P, Yamada M (2018) Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1–2. BMC Microbiol 18:73

    PubMed  PubMed Central  Google Scholar 

  18. Stephen AM (1983) Other plant polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol 2. Academic Press, London, pp 97–193

    Google Scholar 

  19. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    CAS  PubMed  Google Scholar 

  20. Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642

    CAS  PubMed  Google Scholar 

  21. Scheller HV, Ulvkov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    CAS  PubMed  Google Scholar 

  22. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    CAS  Google Scholar 

  23. Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Eriksson K-EL (ed) Biotechnology in the pulp and paper industry. Springer, Berlin, pp 45–125

    Google Scholar 

  24. Reid JG (2000) Cementing the wall: cell wall polysaccharide synthesising enzymes. Curr Opin Plant Biol 3:512–516

    CAS  PubMed  Google Scholar 

  25. Sun RC, Lawther JM, Banks WB (1995) Influence of alkaline pre-treatment on the cell wall components of wheat straw. Indust Crops Prod 4:127–145

    CAS  Google Scholar 

  26. Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–131

    CAS  PubMed  Google Scholar 

  27. Timel TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Google Scholar 

  28. Previato LM, Gorin PAJ, Previato JO (1979) Investigations on polysaccharide components of cells of Herpetomonas samuelpessoai grown on various media. Biochemistry 18:149–154

    PubMed  Google Scholar 

  29. Jones C, Wait R, Previato JO, Mendonça-Previato L (2000) The structure of a complex glycosylphosphatidyl inositol-anchored glucoxylan from the kinetoplastid protozoan Leptomonas samueli. Eur J Biochem 267:5387–5396

    CAS  PubMed  Google Scholar 

  30. Rosner H, Grimnecke HD, Knirel YA, Shaskov AS (1992) Hyaluronic acid and a (1,4)-beta-D-xylan, extracellular polysaccharides of Pasteurella multocida (Carter type A) strain 880. Carbohydr Res 223:329–333

    CAS  PubMed  Google Scholar 

  31. Ebringerova A, Heinze T (2000) Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    CAS  Google Scholar 

  32. Yamagaki T, Maeda M, Kanazawa K, Ishizuka Y, Nakanishi H (1996) Structures of Caulerpa cell wall microfibril xylan with detection of β-l,3-xylooligosac-charides as revealed by matrix-assisted laser desorption ionization/time of flight/mass spectrometry. Biosci Biotechnol Biochem 60:1222–1228

    CAS  Google Scholar 

  33. Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic, San Diego, pp 196–285

    Google Scholar 

  34. Samuelson AB, Lund I, Djahromi JM, Paulsen BS, World JK, Knutsen AH (1999) Structural features and anti-complementary activity of some heteroxylan polysaccharide fractions from the seeds of Plantago major L. Carbohydr Polym 38:133–143

    Google Scholar 

  35. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    CAS  PubMed  Google Scholar 

  36. Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39–67

    CAS  PubMed  Google Scholar 

  37. Moreira L (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    CAS  PubMed  Google Scholar 

  38. Blibech M, Maktouf S, Chaari F, Zouari S, Neifar M, Besbes S, Ellouze-Ghorbel R (2013) Functionality of galactomannan extracted from Tunisian carob seed in bread dough. J Food Sci Technol 52:1–7

    Google Scholar 

  39. McCleary BV, Allan HC, Dea ICM, Rees DA (1985) The fine structures of carob and guar galactomannans. Carbohydr Res 139:237–260

    CAS  Google Scholar 

  40. Puls J, Schuseil J (1993) Chemistry of hemicelluloses: relation between hemicellulose structure and enzyme required for hydrolysis. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London and Chapel Hill, pp 1–27

    Google Scholar 

  41. Rose JK (2003) The plant cell wall. CRC Press, Boca Raton

    Google Scholar 

  42. Gírio F, Fonseca C, Carvalheiro F, Duarte L, Marques S, Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    PubMed  Google Scholar 

  43. Willkie KCB (1979) The hemicelluloses of grasses and cereals. Adv Carbohydr Chem Biochem 36:215–264

    Google Scholar 

  44. Gorin PAJ, Barreto-Bergter E (1983) The chemistry of polysaccharides of fungi and lichens. In: Aspinall GO (ed) The polysaccharides, vol 2. Academic Press, London, pp 365–409

    Google Scholar 

  45. Lee JH, Lee IY (2001) Optimization of uracil addition for curdlan (beta-1,3-glucan) production by Agrobacterium sp. Biotechnol Lett 23:1131–1134

    CAS  Google Scholar 

  46. Phillips KR, Lawford HG (1983) Theoretical maximum and observed product yields associated with curdlan production by Alcaligenes faecalis. Can J Microbiol 29:1270–1276

    CAS  PubMed  Google Scholar 

  47. Moure A, Gullón P, Domínguez H, Parajó JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    CAS  Google Scholar 

  48. Singh S, Ghosh A, Goyal A (2017) Manno-oligosaccharides as prebiotic-valued products from agro-waste. In: Varjani S, Parameswaran B, Kumar S, Khare S (eds) Biosynthetic technology and environmental challenges. Energy, environment, and sustainability. Springer, Singapore

    Google Scholar 

  49. Ando H, Ohba H, Sakaki T, Takamine K, Kamino Y, Moriwaki S et al (2004) Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol In Vitro 18:765–771

    CAS  PubMed  Google Scholar 

  50. Nawaz A, Bakhsh Javaid A, Irshad S, Hoseinifar SH, Xiong H (2018) The functionality of prebiotics as immunostimulant: evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol 76:272–278

    CAS  PubMed  Google Scholar 

  51. Yuan X, Wang J, Yao H (2005) Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chem 90:759–764

    CAS  Google Scholar 

  52. Christakopoulos P, Katapodis P, Kalogeris E, Kekos D, Macris BJ, Stamatis H, Skaltsa H (2003) Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31:171–175

    CAS  PubMed  Google Scholar 

  53. Gupta A, Das SP, Ghosh A, Choudhary R, Das D, Goyal A (2014) Bioethanol production from hemicellulose rich Populus nigra involving recombinant hemicellulases from Clostridium thermocellum. Bioresour Technol 165:205–213

    CAS  PubMed  Google Scholar 

  54. He YC, Jiang CX, Jiang JW, Di JH, Liu F, Ding Y, Qing Q, Ma CL (2017) One-pot chemo-enzymatic synthesis of furfuralcohol from xylose. Bioresour Technol 238:698–705

    CAS  PubMed  Google Scholar 

  55. Wischral D, Arias JM, Modesto LF, de França Passos D, Pereira Jr N (2019) Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: integrating xylose and glucose fermentation. Biotechnol Prog 35(1):e2718. https://doi.org/10.1002/btpr.2718

    Article  CAS  PubMed  Google Scholar 

  56. Viikari L, Suurnäkki A, Grönqvist S, Raaska L, Ragauskas A (2009) Forest products: biotechnology in pulp and paper processing. In: Schaechter M (ed) Encyclopedia of microbiology. Academic Press, New York, pp 80–94

    Google Scholar 

  57. Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl Microbiol Biotechnol 28:419–424

    CAS  Google Scholar 

  58. Marques G, Gutiérrez A, Jdel Río JC, Evtuguin DV (2010) Acetylated heteroxylan from Agave sisalana and its behavior in alkaline pulping and TCF/ECF bleaching. Carbohydr Polym 18:517–523

    Google Scholar 

  59. Reinoso FAM, Rencoret J, Gutiérrez A, Milagres AMF, del Río JC, Ferraz A (2018) Fate of p-hydroxycinnamates and structural characteristics of residual hemicelluloses and lignin during alkaline-sulfite chemithermomechanical pretreatment of sugarcane bagasse. Biotechnol Biofuels 11:153

    PubMed  PubMed Central  Google Scholar 

  60. Sporck D, Reinoso FAM, Rencoret J, Gutiérrez A, del Rio JC, Ferraz A, Milagres AMF (2017) Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnol Biofuels 10:296

    PubMed  PubMed Central  Google Scholar 

  61. Lyczakowski JJ, Wicher KB, Terrett OM, Faria-Blanc N, Yu X, Brown D et al (2017) Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnol Biofuels 10(224):2017

    Google Scholar 

  62. Honda Y, Kitaoka M (2004) A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J Biol Chem 279:55097–55103

    CAS  PubMed  Google Scholar 

  63. Regmi S, Yoo HY, Choi YH, Choi YS, Yoo JC, Kim SW (2017) Prospects for bio-industrial application of an extremely alkaline mannanase from Bacillus subtilis subsp. inaquosorum CSB31. Biotechnol J 12(11). https://doi.org/10.1002/biot.201700113

  64. Yoo HY, Pradeep GC, Lee SK, Park DH, Cho SS, Choi YH et al (2015) Understanding β-mannanase from Streptomyces sp. CS147 and its potential application in lignocellulose based biorefining. Biotechnol J 10:1894–1902

    CAS  PubMed  Google Scholar 

  65. Yadav P, Maharjan J, Korpole S, Prasad GS, Sahni G, Bhattarai T, Sreerama L (2018) Production, purification, and characterization of thermostable alkaline xylanase from Anoxybacillus kamchatkensis NASTPD13. Front Bioeng Biotechnol 6:65

    PubMed  PubMed Central  Google Scholar 

  66. Taibi Z, Saoudi B, Boudelaa M, Trigui H, Belghith H, Gargouri A, Ladjama A (2012) Purification and biochemical characterization of a highly thermostable xylanase from Actinomadura sp. strain Cpt20 isolated from poultry compost. Appl Biochem Biotechnol 166:663–679

    CAS  PubMed  Google Scholar 

  67. Horikoshi K, Atsukawa Y (1973) Xylanase produced by alkalophilic Bacillus no C-59-2. Agric Biol Chem 37:2097–2103

    CAS  Google Scholar 

  68. Aizawa T, Urai M, Iwabuchi N, Nakajima M, Sunairi M (2010) Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 60:61–66

    CAS  PubMed  Google Scholar 

  69. Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-β-1-4-xylanase from bacillus halodurans S7: purification and characterization. Enzym Microb Technol 39:1492–1498

    CAS  Google Scholar 

  70. Raj A, Kumar S, Singh SK, Prakash J (2018) Production and purification of xylanase from alkaliphilic Bacillus licheniformis and its pretreatment of eucalyptus Kraft pulp. Biocatal Agric Biotechnol 15:199–209

    Google Scholar 

  71. Gessesse G, Mamo G (1998) Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp. AR-135. J Ind Microbiol Biotechnol 20:210–214

    CAS  Google Scholar 

  72. Simkhada JR, Yoo HY, Choi YH, Kim SW, Yoo JC (2012) An extremely alkaline novel xylanase from a newly isolated Streptomyces strain cultivated in corncob medium. Appl Biochem Biotechnol 168:2017–2027

    CAS  PubMed  Google Scholar 

  73. Zhao B, Chen S (2012) Alkalitalea saponilacus gen. nov., sp. nov., an obligately anaerobic, alkaliphilic, xylanolytic bacterium from a meromictic soda lake. Int J Syst Evol Microbiol 62:2618–2623

    CAS  PubMed  Google Scholar 

  74. Khandeparkar RDS, Bhosle NB (2006) Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation. Enzym Microb Technol 39:732–742

    CAS  Google Scholar 

  75. Gupta S, Bhushan B, Hoondal GS (2000) Isolation, purification and characterization of xylanasefrom Staphylococcus sp. SG-13 and its application in biobleaching of Kraft pulp. J Appl Microbiol 88:325–334

    CAS  PubMed  Google Scholar 

  76. Khandeparkar R, Bhosle N (2006) Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res Microbiol 157:315–325

    CAS  PubMed  Google Scholar 

  77. Taneja K, Gupta S, Kuhad RC (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol 85:39–42

    CAS  PubMed  Google Scholar 

  78. Dutta T, Sengupta R, Sahoo R, Ray SS, Bhattacharjee A, Ghosh S (2007) A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: production, purification and characterization. Lett Appl Microbiol 44:206–211

    CAS  PubMed  Google Scholar 

  79. Ohkuma M, Shimizu H, Thongaram T, Kosono S, Moryia K, Trakulnaleamsai S et al (2003) An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite. Microbes Environ 18:145–151

    Google Scholar 

  80. Verma D, Kawarabayasi Y, Miyazaki K, Satyanarayana T (2013) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8:e52459

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang G, Huang X, Ng TB, Lin J, Ye XY (2014) High phylogenetic diversity of glycosyl hydrolase family 10 and 11 xylanases in the sediment of lake Dabusu in China. PLoS One 9:e112798

    PubMed  PubMed Central  Google Scholar 

  82. Wang G, Wu J, Yan R, Lin J, Ye X (2017) A novel multi-domain high molecular, salt-stable alkaline xylanase from Alkalibacterium sp. SL3. Front Microbiol 7:2120

    PubMed  PubMed Central  Google Scholar 

  83. Nakamura S, Nakai R, Wakabayashi K, Ishiguro Y, Aono R, Horikoshi K (1994) Thermophilic alkaline xylanase from newly isolated alkaliphilic and thermophilic Bacillus sp. strain TAR1. Biosci Biotechnol Biochem 58:78–81

    CAS  PubMed  Google Scholar 

  84. Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl Environ Microbiol 59:2311–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mongkorntanyatip K, Limsakul P, Ratanakhanokchai K, Khunrae P (2017) Overexpression and characterization of alkaliphilic Bacillus firmus strain K-1 xylanase. Agric Nat Resour 51:437–444

    Google Scholar 

  86. Prakash P, Jayalakshmi SK, Prakash B, Rubul M, Sreeramulu K (2012) Production of alkaliphilic, halotolerant, thermostable cellulase free xylanase by Bacillus halodurans PPKS-2 using agro waste: single step purification and characterization. World J Microbiol Biotechnol 28:183–192

    CAS  PubMed  Google Scholar 

  87. Gessesse A (1998) Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl Environ Microbiol 64:533–3535

    Google Scholar 

  88. Chang P, Tsai WS, Tsa CL, Tseng MJ (2004) Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem Biophys Res Commun 319:1017–1025

    CAS  PubMed  Google Scholar 

  89. Duarte MC, Pellegrino AC, Portugal EP, Ponezi AN, Franco TT (2000) Characterization of alkaline xylanases from Bacillus pumilus. Braz J Microbiol 31:90–94

    CAS  Google Scholar 

  90. Sharma A, Adhikari S, Satyanarayana T (2006) Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 23:483–490

    Google Scholar 

  91. Chanjuan L, Hong Y, Shao Z, Lin L, Huang X, Liu P et al (2009) Novel alkali-stable, cellulase-free xylanase from deep-sea Kocuria sp. Mn22. J Microbiol Biotechnol 19:873–880

    PubMed  Google Scholar 

  92. Kuramochi K, Uchimura K, Kurata A, Kobayashi T, Hirose Y, Miura T et al (2016) A high-molecular-weight, alkaline, and thermostable beta-1,4-xylanase of a subseafloor Microcella alkaliphila. Extremophiles 20:471–478

    CAS  PubMed  Google Scholar 

  93. Valenzuela SV, Díaz P, Javier Pastor FI (2010) Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J Agric Food Chem 58:4814–4818

    CAS  PubMed  Google Scholar 

  94. Sharma M, Mehta S, Kumar A (2013) Purification and characterization of alkaline xylanase secreted from Paenibacillus macquariensis. Adv Microbiol 3:32–41

    CAS  Google Scholar 

  95. Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol 24:396–402

    CAS  Google Scholar 

  96. Raj A, Kumar S, Singh SK (2013) A highly thermostable xylanase from Stenotrophomonas maltophilia: purification and partial characterization. Enzyme Res 2013:429305. https://doi.org/10.1155/2013/429305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang F, Chen JJ, Ren WZ, Lin LB, Zhou Y, Zhi XY et al (2012) Cloning, expression, and characterization of an alkaline thermostable GH11 xylanase from Thermobifida halotolerans YIM 90462T. J Ind Microbiol Biotechnol 39:1109–1116

    CAS  PubMed  Google Scholar 

  98. Honda H, Kudo T, Ikura Y, Horikoshi K (1985) Two types of xylanases of alkalophilic Bacillus sp. No. C-125. Can J Microbiol 31:538–542

    CAS  Google Scholar 

  99. Herlet J, Kornberger P, Roessler B, Glanz J, Schwarz WH, Liebl W, Zverlov VV (2017) A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes. Biotechnol Biofuels 10:234

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Takeda N, Hirasawa K, Uchimura K, Nogi Y, Hatada Y, Usami R et al (2004) Purification and enzymatic properties of a highly alkaline mannanase from alkaliphilic Bacillus sp. strain JAMB-750. J Biol Macromol 4:67–74

    CAS  Google Scholar 

  101. Takeda N, Hirasawa K, Uchimura K, Nogi Y, Hatada Y, Akita M et al (2004) Alkaline mannanase from a novel species of alkaliphilic Bacillus. J Appl Glycosci 51:229–236

    CAS  Google Scholar 

  102. Vijayalaxmi S, Prakash P, Jayalakshmi SK, Mulimani VH, Sreeramulu K (2013) Production of extremely alkaliphilic, halotolerant, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl Biochem Biotechnol 171:382–395

    CAS  PubMed  Google Scholar 

  103. Zhou C, Xue Y, Ma Y (2018) Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10. Microb Cell Factories 17:124

    Google Scholar 

  104. Ma Y, Xue Y, Dou Y, Xu Z, Tao W, Zhou P (2004) Characterization and gene cloning of a novel β-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles 8:447–454

    CAS  PubMed  Google Scholar 

  105. Chauhan PS, Sharma P, Puri N, Gupta N (2014) Purification and characterization of an alkali-thermostable β-mannanase from Bacillus nealsonii PN-11 and its application in mannooligosaccharides preparation having prebiotic potential. Eur Food Res Technol 238:927–936

    CAS  Google Scholar 

  106. Pradeep GC, Cho SS, Choi YH, Choi YS, Jee JP, Seong CN et al (2016) An extremely alkaline mannanase from Streptomyces sp. CS428 hydrolyzes galactomannan producing series of mannooligosaccharides. World J Microbiol Biotechnol 32:84. https://doi.org/10.1007/s11274-016-2040-5

    Article  CAS  Google Scholar 

  107. Akino T, Nakamura N, Horikoshi K (1988) Characterization of three β-mannanases of an alkalophilic Bacillus sp. Agric Biol Chem 52:773–779

    CAS  Google Scholar 

  108. El-Sharouny EE, El-Toukhy NM, El-Sersy NA, El-Gayar AA (2015) Optimization and purification of mannanase produced by an alkaliphilic-thermotolerant Bacillus cereus N1 isolated from Bani Salama Lake in Wadi El-Natron. Biotechnol Biotechnol Equip 29:315–323

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang P, Li Y, Wang Y, Meng K, Luo H, Yuan T et al (2009) A novel beta-mannanase with high specific activity from Bacillus circulans CGMCC1554: gene cloning, expression and enzymatic characterization. Appl Biochem Biotechnol 159:85–94

    CAS  PubMed  Google Scholar 

  110. Li Y, Yang P, Meng K, Wang Y, Luo H, Wu N et al (2008) Gene cloning, expression, and characterization of a novel beta-mannanase from Bacillus circulans CGMCC 1416. J Microbiol Biotechnol 18:160–166

    CAS  PubMed  Google Scholar 

  111. Kumar D, Angural S, Rana M, Kaur G, Puri N, Gupta N (2017) Cloning, characterization and its potential in pulp bio bleaching by alkali thermostable β-mannanase from Bacillus sp. 22. Eur J Pharm Med Res 4:584–592

    Google Scholar 

  112. Virupakshi S, Babu G, Naik GR (2005) Partial purification and characterization of thermostable alkaline β-mannanase from Bacillus sp. JB-99 suitable for the pulp bleaching. J Microbiol Biotechnol 15:689–693

    CAS  Google Scholar 

  113. Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93:1817–1830

    CAS  PubMed  Google Scholar 

  114. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    CAS  PubMed  Google Scholar 

  115. Kansoh AL, Nagieb ZA (2004) Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood Kraft pulp. Antonie Van Leeuwenhoek 85:103–114

    CAS  PubMed  Google Scholar 

  116. Bettiol JP, Showell MS (2002) Detergent compositions comprising a mannanase and a protease. US Patent No. 6,376,445

    Google Scholar 

  117. Akino T, Nakamura N, Horikoshi K (1987) Production of β-mannosidase and β-mannanase by an alkalophilic Bacillus sp. Appl Microbiol Biotechnol 26:323–327

    CAS  Google Scholar 

  118. Akita M, Takeda N, Hirasawa K, Sakai H, Kawamoto M, Yamamoto M et al (2004) Crystallization and preliminary X-ray study of alkaline mannanase from an alkaliphilic Bacillus isolate. Acta Crystallogr D Biol Crystallogr 60:1490–1492

    PubMed  Google Scholar 

  119. Hatada Y, Takeda N, Hirasawa K, Ohta Y, Usami R et al (2005) Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9:497–500

    CAS  PubMed  Google Scholar 

  120. He X, Liu N, Li W, Zhang Z, Zhang B, Ma Y (2008) Inducible and constitutive expression of a novel thermostable alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzyme Microb Technol 43:13–18

    CAS  Google Scholar 

  121. Luo Z, Miao J, Li G, Du Y, Yu X (2017) A recombinant highly thermostable β-mannanase (ReTMan26) from thermophilic Bacillus subtilis (TBS2) expressed in Pichia pastoris and its pH and temperature stability. Appl Biochem Biotechnol 182:1259–1275

    CAS  PubMed  Google Scholar 

  122. Elegir G, Szakacs G, Jeffries TW (1994) Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B-12-2. Appl Environ Microbiol 60:2609–2615

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Biely P, Markovik O, Mislovicova D (1985) Sensitive detection of endo-1,4,-β-glucanases and endo-1,4-β-xylanases in gels. Anal Biochem 144:147–151

    CAS  PubMed  Google Scholar 

  124. Dobozi MS, Szakacs G, Bruschi CV (1992) Xylanase activity of Phanerochaete chrysosporium. Appl Environ Microbiol 58:3466–3471

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee YS, Ratanakhanokchai K, Piyatheerawong W, Kyu KL, Rho M, Kim YS et al (2006) Production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1. J Microbiol Biotechnol 16:921–926

    Google Scholar 

  126. Gübitz GM, Hayn M, Sommerauer M, Steiner W (1996) Mannan-degrading enzymes from Sclerotium rolfsii: characterisation and synergism of two endo β-mannanases and a β-mannosidase. Bioresour Technol 58:127–135

    Google Scholar 

  127. Shrinivas D, Savitha G, Raviranjan K, Naik GR (2010) A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization. Appl Biochem Biotechnol 162:2049–2057

    CAS  PubMed  Google Scholar 

  128. Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y et al (2009) A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl Microbiol Biotechnol 83:99–107

    CAS  PubMed  Google Scholar 

  129. Maharjan A, Alkotaini B, Kim BS (2018) Fusion of carbohydrate binding modules to bifunctional cellulase to enhance binding affinity and cellulolytic activity. Biotechnol Bioprocess Eng 23:79–85

    CAS  Google Scholar 

  130. Mamo G, Hatti-Kaul R, Mattiasson B (2007) Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremophiles 11:169–177

    CAS  PubMed  Google Scholar 

  131. Bai W, Xue Y, Zhou C, Ma Y (2015) Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5. Biotechnol Appl Biochem 62:208–217

    CAS  PubMed  Google Scholar 

  132. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    PubMed  PubMed Central  Google Scholar 

  133. Larson SB, Day J, Barba de la Rosa AP, Keen NT, McPherson A (2003) First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Biochemistry 42:8411–8422

    CAS  PubMed  Google Scholar 

  134. Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investigation of the active site. J Biol Chem 278:7531–7539

    PubMed  Google Scholar 

  135. Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91:1187–1196

    CAS  PubMed  Google Scholar 

  136. St John FJ, Hurlbert JC, Rice JD, Preston JF, Pozharski E (2011) Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase. J Mol Biol 407:92–109

    CAS  PubMed  Google Scholar 

  137. Alhassid A, Ben-David A, Tabachnikov O, Libster D, Naveh E, Zolotnitsky G et al (2009) Crystal structure of an inverting GH 43 1,5-alpha-L-arabinanase from Geobacillus stearothermophilus complexed with its substrate. Biochem J 422:73–82

    CAS  PubMed  Google Scholar 

  138. Im DH, Kimura KI, Hayasaka F, Tanaka T, Noguchi M, Kobayashi A et al (2012) Crystal structures of glycoside hydrolase family 51 alpha-L-arabinofuranosidase from Thermotoga maritima. Biosci Biotechnol Biochem 76:423–428

    CAS  PubMed  Google Scholar 

  139. Higgins MA, Whitworth GE, El Warry N, Randriantsoa M, Samain E, Burke RD et al (2009) Differential recognition and hydrolysis of host carbohydrate-antigens by Streptococcus Pneumoniae family 98 glycoside hydrolases. J Biol Chem 284:26161–26171

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhao Y, Zhang Y, Cao Y, Qi J, Mao L, Xue Y et al (2011) Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. PLoS One 6(1):e14608

    CAS  PubMed  PubMed Central  Google Scholar 

  141. You X, Qin Z, Yan Q, Yang SQ, Li Y, Jiang ZQ (2018) Complex structure of GH113 beta-1,4-mannanase. J Biol Chem 293:11746–11757

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L et al (2016) A beta-mannanase with a lysozyme-like fold and a novel molecular catalytic mechanism. ACS Cent Sci 2:896–903

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Farber GK, Petsko GA (1990) The evolution of α/β barrel enzymes. Trends Biochem Sci 15:228–234

    CAS  PubMed  Google Scholar 

  144. Manikandan K, Bhardwaj A, Gupta N, Lokanath NK, Ghosh A, Reddy VS et al (2006) Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci 15:1951–1960

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bai W, Zhou C, Xue Y, Huang CH, Guo RT, Ma Y (2014) Three-dimensional structure of an alkaline xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5 and improvement of its thermal performance by introducing arginines substitutions. Biotechnol Lett 36:1495–1501

    CAS  PubMed  Google Scholar 

  146. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    CAS  PubMed  Google Scholar 

  147. Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1999) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Google Scholar 

  148. Leggio LL, Jenkins J, Harris GW, Pickersgill RW (2000) X-ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A. Proteins Struct Funct Genet 41:362–373

    CAS  PubMed  Google Scholar 

  149. Shimizu M, Kaneko Y, Ishihara S, Mochizuki M, Sakai K, Yamada M et al (2015) Novel β-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J Biol Chem 290:27914–27927

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:e201209017

    PubMed  PubMed Central  Google Scholar 

  151. Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790

    CAS  PubMed  Google Scholar 

  152. Sharma K, Thakur A, Goyal A (2019) Xylanases for food applications: enzymes in industrial food processing. In: Parameswaran B, Varjani S, Raveendran S (eds) Green bio-processes: enzymes in industrial food processing. Springer, Singapore, pp 99–116

    Google Scholar 

  153. Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater – a review. Sci Total Environ 333:37–58

    CAS  PubMed  Google Scholar 

  154. Dhiman SS, Sharma J, Battan B (2008) Industrial applications and future prospects of microbial xylanases: a review. Bioresources 3:1377–1402

    Google Scholar 

  155. Sindhu I, Chhibber S, Caplash N, Sharma P (2006) Production of cellulase-free xylanase from Bacillus megaterium by solid state fermentation for biobleaching of pulp. Curr Microbiol 53:167–172

    CAS  PubMed  Google Scholar 

  156. Polizeli MLTM, Rizzatti ACS, Monti R, Terezni HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    CAS  PubMed  Google Scholar 

  157. Valls C, Vidal T, Roncero MB (2010) Boosting the effect of a laccase-mediator system by using a xylanase stage in pulp bleaching. J Hazard Mater 177:586–592

    CAS  PubMed  Google Scholar 

  158. Spence K, Tucker J, Hart P (2009) Comparison of various hardwood Kraft pulp pre-bleaching techniques. TAPPI J 8:10–14

    CAS  Google Scholar 

  159. Sing G, Capalash N, Kaur K, Puri S, Sharma P (2016) Enzyme applications in pulp and paper industry. In: Dhillon SG, Kaur S (eds) Agro-industrial wastes as feedstock for enzyme production: apply and exploit the emerging and valuable use options of waste biomass. Academic Press, London, pp 157–172

    Google Scholar 

  160. Jiang ZH, Van Lierop B, Berry R (2000) Hexenuronic acid groups in pulping and bleaching chemistry. TAPPI J 83:167–175

    CAS  Google Scholar 

  161. Buchert J, Bergnor E, Lindblad G, Viikari L, Ek M (1997) Significance of xylan and glucomannan in the brightness reversion of Kraft pulps. TAPPI J 80:165–171

    CAS  Google Scholar 

  162. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    CAS  PubMed  Google Scholar 

  163. Suurnäkki A, Heijnesson A, Buchert J, Westermark U, Viikari L (1996) Effect of pulp surfaces on enzyme-aided bleaching of Kraft pulps. J Pulp Pap Sci 22:J91–J96

    Google Scholar 

  164. Wedin H, Antonsson S, Ragnar M, Lindström M (2012) Influence of xylan content on the oxygen delignification performance of eucalypt Kraft pulps as studied using prehydrolysis and xylanase treatments. Bioresources 7:5527–5541

    Google Scholar 

  165. Tolan JS, Olson D, Diners RE (1996) Survey of mill usage of xylanase. In: Jeffries TW, Viikari L (eds) Enzymes for pulp and paper processing. ACS symposium series 655. American Chemical Society, Washington, pp 23–35

    Google Scholar 

  166. Georis J, Giannotta F, Buyl ED, Granier B, Frère JM (2000) Purification and properties of three endo-beta-1,4-xylanases produced by Streptomyces sp. strain S38 which diver in their ability to enhance the bleaching of Kraft pulps. Enzym Microb Technol 26:178–186

    CAS  Google Scholar 

  167. Bhoria P, Singh G, Sharma JR, Hoodal GS (2009) Biobleaching of wheat straw-rich-soda pulp by the application of alkalophilic and thermophilic mannanase from Streptomyces sp. PG-08-3. Afr J Biotechnol 11:6111–6116

    Google Scholar 

  168. Montiel MD, Rodríguez J, Pérez-Leblic MI, Hernández M, Arias ME, Copa-Patiño JL (1999) Screening of mannanase in actinomycetes and their potential application in the biobleaching of pine Kraft pulps. Appl Microbiol Biotechnol 52:240–245

    CAS  Google Scholar 

  169. Baeck AC, Busch A, Alfons, IM, Herbots J, Moese RL (1998) Detergent compositions comprising xylan degrading alkaline enzyme and dye transfer inhibiting polymers. European Patent Office. EP0964910A1

    Google Scholar 

  170. Kumar BK, Balakrishnan H, Rele MV (2004) Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. J Ind Microbiol Biotechnol 31:83–87

    CAS  Google Scholar 

  171. Bettiol JLP, Cooremans SPG, Johnstone R, Sreekrishna K, Saunders CW, Maurice I et al (2002) Laundry detergent compositions comprising a saccharide gum degrading enzyme. United States patent US 6,486,112 B1

    Google Scholar 

  172. Herbots IMAJ, Moese RL, Baeck AC, Busch A (1998) Cleaning compositions comprising xylan degrading alkaline enzyme and bleaching agent. Patent WO 983943A1

    Google Scholar 

  173. Shahid M, Mohammad F, Chen G, Tang RC, Xing T (2016) Enzymatic processing of natural fibres: white biotechnology for sustainable development. Green Chem 18:2256–2281

    CAS  Google Scholar 

  174. Kalantzi S, Kekos D, Mamma D (2019) Bioscouring of cotton fabrics by multienzyme combinations: application of Box–Behnken design and desirability function. Cellulose 26:2771–2790

    CAS  Google Scholar 

  175. Singh A, Kaur A, Patra AK, Mahajan R (2018) A sustainable and green process for scouring of cotton fabrics using xylano-pectinolytic synergism: switching from noxious chemicals to eco-friendly catalysts. 3 Biotech 8(4):184

    PubMed  PubMed Central  Google Scholar 

  176. Wang Q, Fan X, Hua Z, Gao W, Chen J (2007) Influence of combined enzymatic treatment on one-bath scouring of cotton knitted fabrics. Biocatal Biotransform 25:9–15

    Google Scholar 

  177. Dhiman SS, Sharma J, Battan B (2008) Pretreatment of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX. Enzym Microb Technol 43:262–269

    CAS  Google Scholar 

  178. Brühlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50

    PubMed  Google Scholar 

  179. Wang Y, Shu T, Fan P, Zhang H, Turunen O, Xiong H, Yu L (2017) Characterization of a recombinant alkaline thermostable β-mannanase and its application in eco-friendly ramie degumming. Process Biochem 61:73–79

    CAS  Google Scholar 

  180. Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP et al (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 112:199–205

    CAS  PubMed  Google Scholar 

  181. Faryar R, Linares-Pastén J, Immerzeel P, Mamo G, Andersson M, Stålbrand H et al (2014) Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food Bioprod Process 93:1–10

    Google Scholar 

  182. Haddar A, Driss D, Frikha F, Ellouz SC, Nasri M (2012) Alkaline xylanases from Bacillus mojavensis A21: production and generation of xylooligosaccharides. Int J Biol Macromol 51:647–656

    CAS  PubMed  Google Scholar 

  183. Shen R, Li HQ, Zhang J, Xu J (2016) Effects of impurities in alkali-extracted xylan on its enzymatic hydrolysis to produce xylo-oligosaccharides. Appl Biochem Biotechnol 179:740–752

    CAS  PubMed  Google Scholar 

  184. Zhu Y, Li X, Sun B, Song H, Li E, Song H (2012) Properties of an alkaline-tolerant, thermostable xylanase from Streptomyces chartreusis L1105, suitable for xylooligosaccharide production. J Food Sci 77:C506–C511

    CAS  PubMed  Google Scholar 

  185. Cassou E (2018) Field burning: agricultural pollution. World Bank, Washington. https://openknowledge.worldbank.org/handle/10986/29504. License: CC BY 3.0 IGO

  186. Singla A, Paroda S, Dhamija SS, Goyal S, Shekhawat K, Amachi S, Inubushi K (2012) Bioethanol production from xylose: problems and possibilities. J Biofuels 3:39–49

    Google Scholar 

  187. Zhao J, Xia LM (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32

    CAS  Google Scholar 

  188. deAlbuquerque TL, SilvaJr IJ, Macedo GR, PonteRocha MV (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789

    Google Scholar 

  189. Li H, Zhang G, Dang Y (2016) Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production. Bioengineered 7:432–438

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kildegaard KR, Wang Z, Chen Y, Nielsen J, Borodina I (2015) Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab Eng Commun 2:132–136

    Google Scholar 

  191. Bradfield MF, Nicol W (2016) Continuous succinic acid production from xylose by Actinobacillus succinogenes. Bioprocess Biosyst Eng 39:233–244

    CAS  PubMed  Google Scholar 

  192. Ye L, Zhou X, Hudari MS, Li Z, Wu JC (2013) Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour Technol 132:38–44

    CAS  PubMed  Google Scholar 

  193. Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM (2011) Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 92:985–996

    CAS  PubMed  Google Scholar 

  194. Faria NT, Santos MV, Fernandes P, Fonseca LL, Fonseca C, Ferreira FC (2014) Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and d-glucose/d-xylose mixtures by Pseudozyma yeast strains. Process Biochem 49:1790–1799

    CAS  Google Scholar 

  195. Liu WC, Kim IH (2017) Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets. Poult Sci 96:566–573

    CAS  PubMed  Google Scholar 

  196. Mendes AR, Ribeiro T, Correia BA, Bule P, Maçãs B, Falcão L et al (2013) Low doses of exogenous xylanase improve the nutritive value of triticale-based diets for broilers. J Appl Poult Res 22:92–99

    CAS  Google Scholar 

  197. Kiarie E, Romero LF, Ravindran V (2014) Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult Sci 93:1186–1196

    CAS  PubMed  Google Scholar 

  198. Munyaka PM, Nandha NK, Kiarie E, Nyachoti CM, Khafipour E (2016) Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult Sci 95:528–540

    CAS  PubMed  Google Scholar 

  199. Romero JJ, Macias EG, Ma ZX, Martins RM, Staples CR, Beauchemin KA, Adesogan AT (2016) Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. J Dairy Sci 99:3486–3496

    CAS  PubMed  Google Scholar 

  200. Tewoldebrhan TA, Appuhamy JADRN, Lee JJ, Niu M, Seo S, Jeong S, Kebreab E (2017) Exogenous β-mannanase improves feed conversion efficiency and reduces somatic cell count in dairy cattle. J Dairy Sci 100:244–252

    CAS  PubMed  Google Scholar 

  201. Panwar D, Srivastava PK, Kapoor M (2014) Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. Biocatal Agric Biotechnol 3:118–125

    Google Scholar 

  202. Mandal A (2015) Review on microbial xylanases and their applications. Int J Life Sci 4:178–187

    Google Scholar 

  203. Collins T, Hoyoux A, Dutron A, Georis J, Genot B, Dauvrin T et al (2006) Use of glycoside hydrolase family 8 xylanases in baking. J Cereal Sci 43:79–84

    CAS  Google Scholar 

  204. Dutron A, Georis J, Genot B, Dauvrin T, Collins T, Hoyoux A et al (2004) Use of family 8 enzymes with xylanolytic activity in baking. World Intellectual Property Organization, PCT, WO 2004/023879 A1

    Google Scholar 

  205. McRae MP (2017) Dietary fiber is beneficial for the prevention of cardiovascular disease: an umbrella review of meta-analyses. J Chiropr Med 16:289–299

    PubMed  PubMed Central  Google Scholar 

  206. Yang J, Summanen PH, Henning SM, Hsu M, Lam H, Huang J et al (2015) Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Front Physiol 6:216. https://doi.org/10.3389/fphys.2015.00216. eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  207. Laurikainen H, Harkonen T, Autio K, Poutanen K (1998) Effects of enzymes in fibre-enriched baking. J Sci Food Agric 76:239–249

    CAS  Google Scholar 

  208. Ingelbrecht JA, Moers K, Abecassis J, Rouau X, Delcour JA (2001) Influence of arabinoxylans and endoxylanases on pasta processing and quality. Production of high-quality pasta with increased levels of soluble fiber. Cereal Chem 78:721–729

    CAS  Google Scholar 

  209. Christophersen C, Andersen E, Jacobsen TS, Wagner P (1997) Xylanases in wheat separation. Starch-Starke 49:5–12

    CAS  Google Scholar 

  210. Cruz F, Migo V, Valencia AS, Demafelis R, Alfaf GC, Alcantara JA (2007) Enzyme mixtures for the extraction of oil from the seeds of vutalao (Calophyllum inophyllum). Crop Prot Newslett 32:17–30

    Google Scholar 

  211. Ricochon G, Muniglia L (2010) Influence of enzymes on the oil extraction processes in aqueous media. OCL 17:356–359

    Google Scholar 

  212. Mamo G, Kasture S, Faryar R, Hashim S, Hatti-Kaul R (2010) Surfactants from xylan: production of n-octyl xylosides using a highly thermostable xylanase from Thermotoga neapolitana. Process Biochem 45:700–705

    CAS  Google Scholar 

  213. Morrill J, Månberger A, Rosengren A, Naidjonoka P, von Freiesleben P, Krogh KBRM et al (2018) β-Mannanase-catalyzed synthesis of alkyl mannooligosides. Appl Microbiol Biotechnol 102:5149–5163

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Pangsri P, Pangsri P (2017) Mannanase enzyme from Bacillus subtilis P2-5 with waste management. Energy Procedia 138:343–347

    CAS  Google Scholar 

  215. Moreau RA, Powell MJ, Whitaker BD, Bailey BA, Anderson JD (1994) Xylanase treatment of plant cells induces glycosylation and fatty acylation of phytosterols. Physiol Plant 91:575–580

    CAS  Google Scholar 

  216. Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I (1999) Production of recombinant proteins in plant root exudates. Nat Biotechnol 17:466–469

    CAS  PubMed  Google Scholar 

  217. Zhang B, Huston A, Whipple L, Barrett H, Wall M, Hutchins R, Mirakyan A (2013) A superior, high-performance enzyme for breaking borate crosslinked fracturing fluids under extreme well conditions. SPE Prod Oper 28:210–216

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mamo, G. (2019). Alkaline Active Hemicellulases. In: Mamo, G., Mattiasson, B. (eds) Alkaliphiles in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 172. Springer, Cham. https://doi.org/10.1007/10_2019_101

Download citation

Publish with us

Policies and ethics