Skip to main content

Generating Electric Current by Bioartificial Photosynthesis

  • Chapter
  • First Online:
Bioelectrosynthesis

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 167))

Abstract

Abundant solar energy can be a sustainable source of energy. This chapter highlights recent advancements, challenges, and future scenarios in bioartificial photosynthesis, which is a new subset of bioelectrochemical systems (BESs) and technologies. BES technologies exploit the catalytic interactions between biological moieties and electrodes. At the nexus of BES and photovoltaics, this review focuses on light-harvesting technologies based on bioartificial photosynthesis. Such technologies are promising because electrical energy is generated from sunlight and water without the need for additional organic feedstock. This review focuses on photosynthetic electron generation and transfer and compares the current status of bioartificial photosynthesis with other artificial systems that mimic the chemistry of photosynthetic energy transformation.

The fundamental principles and the operation of functional units of bioartificial photosynthesis are addressed. Selected photobioelectrochemical systems employed to obtain light-driven electric currents from photosynthetic organisms are presented. The achievable current output and theoretical maxima are revisited by conceptualizing operational and process window techniques. Factors affecting overall photocurrent efficiency, performance limitations, and scaleup bottlenecks are highlighted in view of enhancing the energy conversion efficiency of photobioelectrochemical systems. To finish, the challenges associated with bioartificial photosynthetic technologies are outlined.

Operational window for (bio-)artificial photosynthesis. Green circle in the upper right corner: development objective for research and engineering efforts

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BES:

Bioelectrochemical system

BPV:

Biophotovoltaic

Chl a :

Chlorophyll a

cyt-b6f:

Cytochrome-b6f

FTO:

Fluorine-doped tin oxide

ITO:

Indium tin oxide

MET:

Microbial electrochemical technology

MFC:

Microbial fuel cell

OEC:

Oxygen-evolving complex

OPV:

Organic photovoltaic

PC:

Plastocyanin

PETC:

Photosynthetic electron transport chain

Pheo:

Pheophytin

PS:

Photosystem

PV:

Photovoltaic

References

  1. Govindjee, Shevela D (2011) Front Plant Sci 2:28

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barber J, Tran PD (2013) J R Soc Interface 10:20120984

    PubMed  PubMed Central  Google Scholar 

  3. Bombelli P, Müller T, Herling TW, Howe CJ, Knowles TPJ (2015) Adv Energy Mater 5. https://doi.org/10.1002/aenm.201401299

    Google Scholar 

  4. Hahn G (2013) Solar cells from ribbon silicon. In: Wengenmayr R, Bührke T (eds) Renewable energy: sustainable concepts for the energy change. Wiley-VCH, Weinheim, pp 44–51

    Google Scholar 

  5. Meyer N (2013) Low-priced modules for solar construction. In: Wengenmayr R, Bührke T (eds) Renewable energy: sustainable concepts for the energy change. Wiley-VCH, Weinheim, pp 52–55

    Google Scholar 

  6. Wengenmayr R (2013) Solar cells: an oveview. In: Wengenmayr R, Bührke T (eds) Renewable energy: sustainable concepts for the energy change. Wiley-VCH, Weinheim, pp 36–42

    Google Scholar 

  7. Harr M, Bonnet D, Fischer KH (2013) On the path towards power-grid parity. In: Wengenmayr R, Bührke T (eds) Renewable energy: sustainable concepts for the energy change. Wiley-VCH, Weinheim, pp 56–59

    Google Scholar 

  8. Xu T, Yu L (2014) Mater Today 17:11–15

    CAS  Google Scholar 

  9. McCormick AJ, Bombelli P, Bradley RW, Thorne R, Wenzel T, Howe CJ (2015) Energy Environ Sci 8:1092–1109

    CAS  Google Scholar 

  10. Kern J, Renger G (2007) Photosynth Res 94:183–202

    CAS  PubMed  Google Scholar 

  11. Vermaas WFJ (2001) Encycl Life Sci 161:1–7

    Google Scholar 

  12. Kalyanasundaram K, Graetzel M (2010) Curr Opin Biotechnol 21:298–310

    CAS  PubMed  Google Scholar 

  13. Berg JM, Tymoczko JL, Stryer L (2013) Biochemistry. W. H. Freemand and Company, New York

    Google Scholar 

  14. Bombelli P, Bradley RW, Scott AM, Philips AJ, McCormick AJ, Cruz SM, Anderson A, Yunus K, Bendall DS, Cameron PJ et al (2011) Energy Environ Sci 4:4690–4698

    CAS  Google Scholar 

  15. Ducat DC, Way JC, Silver PA (2011) Trends Biotechnol 29:95–103

    CAS  PubMed  Google Scholar 

  16. Govindjee R, Veit (2010) http://www.life.illinois.edu/govindjee/ZSchemeG.html

  17. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Nat Struct Mol Biol 16:334–342

    CAS  PubMed  Google Scholar 

  18. Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2016) Biochim Biophys Acta Bioenerg 1857:247–255

    CAS  Google Scholar 

  19. Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J (2014) J Biol Chem 289:1930–1937

    CAS  PubMed  Google Scholar 

  20. Darus L, Lu Y, Ledezma P, Keller J, Freguia S (2015) Bioresour Technol 195:248–253

    CAS  PubMed  Google Scholar 

  21. Freguia S, Virdis B, Harnisch F, Keller J (2012) Electrochim Acta 82:165–174

    CAS  Google Scholar 

  22. Kato Y, Sugiura M, Oda A, Watanabe T (2009) Proc Natl Acad Sci U S A 106:17365–17370

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanaka K, Tamamushi R, Ogawa T (1985) J Chem Technol Biotechnol 35B:191–197

    CAS  Google Scholar 

  24. Cereda A, Hitchcock A, Symes MD, Cronin L, Bibby TS, Jones AK (2014) PLoS One 9:e91484. https://doi.org/10.1371/journal.pone.0091484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pisciotta JM, Zou Y, Baskakov IV (2011) Appl Microbiol Biotechnol 91:377–385

    CAS  PubMed  Google Scholar 

  26. Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Biotechnol Bioeng 104:939–946

    CAS  PubMed  Google Scholar 

  27. Logan BE (2009) Nat Rev Microbiol 7:375–381

    CAS  PubMed  Google Scholar 

  28. Lovley DR (2008) Curr Opin Biotechnol 19:564–571

    CAS  PubMed  Google Scholar 

  29. Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D (2014) Appl Microbiol Biotechnol 98(20):8481–8495

    CAS  PubMed  Google Scholar 

  30. Schröder U, Harnisch F, Angenent LT (2015) Energy Environ Sci 8:513–519

    Google Scholar 

  31. Koch C, Harnisch F (2016) ChemElectroChem 3:1–15

    Google Scholar 

  32. Sekar N, Ramasamy RP (2015) Electrochem Soc Interface 24:67–73

    CAS  Google Scholar 

  33. Rabaey K, Rozendal RA (2010) Nat Rev Microbiol 8:706–716

    CAS  PubMed  Google Scholar 

  34. Ochiai H, Shibata H, Sawa Y, Shoga M, Ohta S (1983) Appl Biochem Biotechnol 8:289–303

    CAS  Google Scholar 

  35. Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V (2011) Photochem Photobiol 87:946–964

    CAS  PubMed  Google Scholar 

  36. Chen HC (2016) Solar fuels via artificial photosynthesis. PhD thesis, University of Amsterdam, Amsterdam. ISBN: 978-94-6182-644-2

    Google Scholar 

  37. Symes MD, Cogdell RJ, Cronin L (2013) Philos Trans Roy Soc London Ser A 371:20110411

    Google Scholar 

  38. Alibabaei L, Brennaman MK, Norris MR, Kalanyan B, Song W, Losego MD, Concepcion JJ, Binstead RA, Parsons GN, Meyer TJ (2013) Proc Natl Acad Sci U S A 110:20008–20013

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Krebs FC (2012) Stability and degradation of organic and polymer solar cells. Wiley, New Jersey

    Google Scholar 

  40. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG, Cook TR, Barber J, Betley TA et al (2011) Science 334:645–648

    CAS  PubMed  Google Scholar 

  41. Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG (2016) Science 352:1210–1213

    CAS  PubMed  Google Scholar 

  42. Ihssen J, Braun A, Gajda-Schrantz K, Faccio G, Thöny-Meyer L (2014) Curr Protein Pept Sci 15:374–384

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sekar N, Umasankar Y, Ramasamy RP (2014) Phys Chem Chem Phys 16:7862–7871

    CAS  PubMed  Google Scholar 

  44. Tel-Vered R, Willner I (2014) ChemElectroChem 1:1778–1797

    CAS  Google Scholar 

  45. Yehezkeli O, Tel-Vered R, Michaeli D, Willner I, Nechushtai R (2014) Photosynth Res 120:71–85

    CAS  PubMed  Google Scholar 

  46. Hamidi H, Hasan HK, Emek SC, Dilgin Y, Åkerlund HE, Albertsson P-Å, Leech D, Gorton L (2015) ChemSusChem 8:990–993

    CAS  PubMed  Google Scholar 

  47. Calkins JO, Umasankar Y, O’Neill H, Ramasamy RP (2013) Energy Environ Sci 6:1891–1900

    CAS  Google Scholar 

  48. Ciesielski PN (2010) Photosystem I-based systems for photoelectrochemical energy conversion. Vanderbilt University, Nashville. PhD thesis

    Google Scholar 

  49. Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin MK, Bruce BD, Graetzel M, Zhang S (2012) Sci Rep 2:234

    PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Magdaong NM, Shen M, Frank HA, Rusling JF (2015) ChemistryOpen 4:111–114

    CAS  PubMed  Google Scholar 

  51. McCormick AJ, Bombelli P, Scott AM, Philips AJ, Smith AG, Fisher AC, Howe CJ (2011) Energy Environ Sci 4:4699

    CAS  Google Scholar 

  52. Bombelli P, Zarrouati M, Thorne RJ, Schneider K, Rowden SJL, Ali A, Yunus K, Cameron PJ, Fisher AC, Ian Wilson D et al (2012) Phys Chem Chem Phys 14:12221–12229

    CAS  PubMed  Google Scholar 

  53. Madiraju KS, Lyew D, Kok R, Raghavan V (2012) Bioresour Technol 110:214–218

    CAS  PubMed  Google Scholar 

  54. Sekar N, Jain R, Yan Y, Ramasamy RP (2016) Biotechnol Bioeng 113:675–679

    CAS  PubMed  Google Scholar 

  55. Lin CC, Wei CH, Chen CI, Shieh CJ, Liu YC (2013) Bioresour Technol 135:640–643

    CAS  PubMed  Google Scholar 

  56. Lovley DR (2012) Annu Rev Microbiol 66:391–409

    CAS  PubMed  Google Scholar 

  57. Koch C, Aulenta F, Schröder U, Harnisch F (2016) Ref Modul Earth Syst Environ Sci:1–19

    Google Scholar 

  58. Malik S, Drott E, Grisdela P, Lee J, Lee C, Lowy D a, Gray S, Tender LM (2009) Energy Environ Sci 2:292

    CAS  Google Scholar 

  59. Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Environ Sci Technol 44:532–537

    CAS  PubMed  Google Scholar 

  60. Velasquez-Orta SB, Curtis TP, Logan BE (2009) Biotechnol Bioeng 103:1068–1076

    CAS  PubMed  Google Scholar 

  61. Rosenbaum M, He Z, Angenent LT (2010) Curr Opin Biotechnol 21:259–264

    CAS  PubMed  Google Scholar 

  62. Takanezawa K, Nishio K, Kato S, Hashimoto K, Watanabe K (2010) Biosci Biotechnol Biochem 74:1271–1273

    CAS  PubMed  Google Scholar 

  63. Wetser K, Liu J, Buisman C, Strik D (2015) Biomass Bioenergy 83:543–550

    CAS  Google Scholar 

  64. Schneider K (2015) Photo-microbial fuel cells. PhD thesis, University of Bath, Bath. ISNI: 0000 0004 5371 7013, http://opus.bath.ac.uk/48417/

  65. Cho YK, Donohue TJ, Tejedor I, Anderson MA, McMahon KD, Noguera DR (2008) J Appl Microbiol 104:640–650

    CAS  PubMed  Google Scholar 

  66. Pisciotta JM, Zou Y, Baskakov IV (2010) PLoS One 5:e10821. https://doi.org/10.1371/journal.pone.0010821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Strik DPBTB, Timmers RA, Helder M, Steinbusch KJJ, Hamelers HVM, Buisman CJN (2011) Trends Biotechnol 29:41–49

    CAS  PubMed  Google Scholar 

  68. Luimstra VM, Kennedy SJ, Güttler J, Wood SA, Williams DE, Packer MA (2014) J Appl Phycol 26:15–23

    CAS  Google Scholar 

  69. Inglesby AE, Yunus K, Fisher AC (2013) Phys Chem Chem Phys 15:6903–6911

    CAS  PubMed  Google Scholar 

  70. Stöckl M, Schlegel C, Sydow A, Holtmann D, Ulber R, Mangold KM (2016) Electrochim Acta 220:444–452

    Google Scholar 

  71. Lee H, Choi S (2015) Lab Chip 15:391–398

    CAS  PubMed  Google Scholar 

  72. Ryu W, Bai SJ, Park JS, Huang Z, Moseley J, Fabian T, Fasching RJ, Grossman AR, Prinz FB (2010) Nano Lett 10:1137–1143

    CAS  PubMed  Google Scholar 

  73. Lee D, Lee D, Won Y, Hong H, Kim Y, Song H, Pyun JC, Cho YS, Ryu W, Moon J (2016) Small 11:1446–1457

    Google Scholar 

  74. Wei X, Lee H, Choi S (2016) Sens Actuators B Chem 228:151–155

    CAS  Google Scholar 

  75. Papaharalabos G, Stinchcombe A, Horsfield I, Melhuish C, Greenman J, Ieropoulos I (2017) J Electrochem Soc 164:H3047–H3051

    CAS  Google Scholar 

  76. Bradley RW, Bombelli P, Lea-Smith DJ, Howe CJ (2013) Phys Chem Chem Phys 15:13611–13618

    CAS  PubMed  Google Scholar 

  77. Logan BE, Wallack MJ, Kim KY, He W, Feng Y, Saikaly PE (2015) Environ Sci Technol Lett 2:206–214

    CAS  Google Scholar 

  78. Li H, Liao JC (2013) Energy Environ Sci 6:2892–2899

    CAS  Google Scholar 

  79. Rasmussen M, Minteer S (2014) J Electrochem Soc 161:H647–H655

    CAS  Google Scholar 

  80. Kuehl M, Glud RN, Ramsing NB, Ploug H (1996) J Phycol 32:799–812

    Google Scholar 

  81. Wang J, Liu J, Liu T (2015) Biotechnol Biofuels 8:49

    PubMed  PubMed Central  Google Scholar 

  82. Rosenbaum MA, Franks AE (2014) Appl Microbiol Biotechnol 98:509–518

    CAS  PubMed  Google Scholar 

  83. Voloshin RA, Kreslavski VD, Zharmukhamedov SK, Bedbenov VS, Ramakrishna S, Allakhverdiev SI (2015) Biofuel Res J 2:227–235

    CAS  Google Scholar 

  84. Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (2014) Trends Biotechnol 32(12):645–655

    CAS  PubMed  Google Scholar 

  85. Halan B, Buehler K, Schmid A (2012) Trends Biotechnol 30. https://doi.org/10.1016/j.tibtech.2012.05.003

    CAS  PubMed  Google Scholar 

  86. Woodley JM, Titchener-Hooker NJ (1996) Bioprocess Eng 14:263–268

    CAS  Google Scholar 

  87. Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Environ Sci Technol 42:4146–4151

    CAS  PubMed  Google Scholar 

  88. Turan B, Becker J-P, Urbain F, Finger F, Rau U, Haas S (2016) Nat Commun 7:12681

    PubMed  PubMed Central  Google Scholar 

  89. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A et al (2011) Science 332:805–809

    CAS  PubMed  Google Scholar 

  90. Bolton JR, Hall DO (1991) Photochem Photobiol 53:545–548

    CAS  Google Scholar 

  91. Wijffels RH, Barbosa MJ, Oswald WJ, Golueke CG, Usui N, Ikenouchi M, Hu Q, Chisti Y, Lestari S, Mäki-Avela P et al (2010) Science 329:796–799

    CAS  PubMed  Google Scholar 

  92. Sakurai H, Masukawa H, Kitashima M, Inoue K (2015) Life 5:997–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  93. McCormick AJ, Bombelli P, Lea-Smith DJ, Bradley RW, Scott AM, Fisher AC, Smith AG, Howe CJ (2013) Energy Environ Sci 6:2682

    CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for using the facilities of the Centre for Biocatalysis (MiKat) at the Helmholtz Centre for Environmental Research, which is supported by European Regional Development Funds (EFRE – Europe funds Saxony) and the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halan, B., Tschörtner, J., Schmid, A. (2017). Generating Electric Current by Bioartificial Photosynthesis. In: Harnisch, F., Holtmann, D. (eds) Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, vol 167. Springer, Cham. https://doi.org/10.1007/10_2017_44

Download citation

Publish with us

Policies and ethics