Skip to main content

Electron Transfer Between Enzymes and Electrodes

  • Chapter
  • First Online:
Bioelectrosynthesis

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 167))

Abstract

Efficient electron transfer between redox enzymes and electrocatalytic surfaces plays a significant role in development of novel energy conversion devices as well as novel reactors for production of commodities and fine chemicals. Major application examples are related to enzymatic fuel cells and electroenzymatic reactors, as well as enzymatic biosensors. The two former applications are still at the level of proof-of-concept, partly due to the low efficiency and obstacles to electron transfer between enzymes and electrodes. This chapter discusses the theoretical backgrounds of enzyme/electrode interactions, including the main mechanisms of electron transfer, as well as thermodynamic and kinetic aspects. Additionally, the main electrochemical methods of study are described for selected examples. Finally, some recent advancements in the preparation of enzyme-modified electrodes as well as electrodes for soluble co-factor regeneration are reviewed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Copeland RA (2000) Enzyme reactions with multiple substrates. In: Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley, New York, pp 350–366

    Google Scholar 

  2. Vidakovic-Koch T, Sundmacher K (2017) Porous electrodes in bioelectrochemistry. In: V P (ed) Encyclopedia of interfacial chemistry: surface science and electrochemistry, Elsevier, Amsterdam

    Google Scholar 

  3. Belsare KD et al (2017) Directed evolution of P450cin for mediated electron transfer. Protein Eng Des Sel 30(2):119–127

    Article  CAS  PubMed  Google Scholar 

  4. Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366(6):560–568

    PubMed  Google Scholar 

  5. Do TQN et al (2014) Mathematical modeling of a porous enzymatic electrode with direct electron transfer mechanism. Electrochim Acta 137:616–626

    Article  CAS  Google Scholar 

  6. Andreu R et al (2007) Direct electron transfer kinetics in horseradish peroxidase electrocatalysis. J Phys Chem B 111(2):469–477

    Article  CAS  PubMed  Google Scholar 

  7. Gupta G et al (2011) Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes. Electrochem Commun 13(3):247–249

    Article  CAS  Google Scholar 

  8. Léger C et al (2002) Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes. J Phys Chem B 106(50):13058–13063

    Article  CAS  Google Scholar 

  9. Tasca F et al (2008) Direct electron transfer at cellobiose dehydrogenase modified anodes for biofuel cells. J Phys Chem C 112(26):9956–9961

    Article  CAS  Google Scholar 

  10. Zimmermann H et al (2000) Anisotropic orientation of horseradish peroxidase by reconstitution on a Thiol-modified gold electrode. Chem Eur J 6(4):592–599

    Article  CAS  PubMed  Google Scholar 

  11. Vidaković-Koch T et al (2011) Impact of the gold support on the electrocatalytic oxidation of sugars at enzyme-modified electrodes. Electroanalysis 23(4):927–930

    Article  CAS  Google Scholar 

  12. Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem 121(32):6011–6013

    Article  Google Scholar 

  13. Bartlett PN, Al-Lolage FA (2017) There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J Electroanal Chem

    Google Scholar 

  14. Alberty RA (1993) Thermodynamics of reactions of Nicotinamide adenine dinucleotide and Nicotinamide adenine dinucleotide phosphate. Arch Biochem Biophys 307(1):8–14

    Article  CAS  PubMed  Google Scholar 

  15. Krebs HA, Kornberg HL (1957) Energy transformations in living matter. Springer-Verlag Berlin Heidelberg, Berlin

    Book  Google Scholar 

  16. Reiger PH (1994) Electrochemistry.2nd edn. Springer Science+Business Media, Dordrecht

    Book  Google Scholar 

  17. Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci 108(34):14049–14054

    Article  CAS  PubMed  Google Scholar 

  18. Togo M et al (2007) An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation. Electrochim Acta 52(14):4669–4674

    Article  CAS  Google Scholar 

  19. Mano N, Mao F, Heller A (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc 124(44):12962–12963

    Article  CAS  PubMed  Google Scholar 

  20. Chen T et al (2001) A miniature biofuel cell. J Am Chem Soc 123(35):8630–8631

    Article  CAS  PubMed  Google Scholar 

  21. Kim H-H et al (2003) A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J Electrochem Soc 150(2):A209–A213

    Article  CAS  Google Scholar 

  22. Willner I et al (1998) Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. J Chem Soc Perkin Trans 2(8):1817–1822

    Article  Google Scholar 

  23. Kuwahara T et al (2007) Properties of the enzyme electrode fabricated with a film of polythiophene derivative and its application to a glucose fuel cell. J Appl Polym Sci 104(5):2947–2953

    Article  CAS  Google Scholar 

  24. Brunel L et al (2007) Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem Commun 9(2):331–336

    Article  CAS  Google Scholar 

  25. Bedekar AS et al (2007) Oxygen limitation in microfluidic biofuel cells. Chem Eng Commun 195(3):256–266

    Article  CAS  Google Scholar 

  26. Nazaruk E et al (2008) Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases. J Power Sources 183(2):533–538

    Article  CAS  Google Scholar 

  27. Tamaki T, Yamaguchi T (2006) High-surface-area three-dimensional biofuel cell electrode using redox-polymer-grafted carbon. Ind Eng Chem Res 45(9):3050–3058

    Article  CAS  Google Scholar 

  28. Matsue T et al (1985) Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of .beta.-cyclodextrin. J Am Chem Soc 107(12):3411–3417

    Article  CAS  Google Scholar 

  29. Yan Y-M, Yehezkeli O, Willner I (2007) Integrated, electrically contacted NAD(P)+−dependent enzyme–carbon nanotube electrodes for biosensors and biofuel cell applications. Chem Eur J 13(36):10168–10175

    Article  CAS  PubMed  Google Scholar 

  30. Li X et al (2008) A miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate. Electrochem Commun 10(6):851–854

    Article  CAS  Google Scholar 

  31. Gao F et al (2007) An enzymatic glucose/O2 biofuel cell: preparation, characterization and performance in serum. Electrochem Commun 9(5):989–996

    Article  CAS  Google Scholar 

  32. Yan Y et al (2006) Carbon-nanotube-based glucose/O2 biofuel cells. Adv Mater 18(19):2639–2643

    Article  CAS  Google Scholar 

  33. Vidaković-Koch T et al (2013) Application of electrochemical impedance spectroscopy for studying of enzyme kinetics. Electrochim Acta 110:94–104

    Article  CAS  Google Scholar 

  34. Vidaković-Koch TR et al (2011) Nonlinear frequency response analysis of the Ferrocyanide oxidation kinetics. Part I. A theoretical analysis. J Phys Chem C 115(35):17341–17351

    Article  CAS  Google Scholar 

  35. Do TQN et al (2015) Dynamic and steady state 1-D model of mediated electron transfer in a porous enzymatic electrode. Bioelectrochemistry 106(Part A):3–13

    Article  CAS  PubMed  Google Scholar 

  36. Vidaković-Koch T et al (2017) Catalyst layer modeling. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer Berlin Heidelberg, Berlin, pp 259–285

    Chapter  Google Scholar 

  37. Bard A, Faulkner L (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  38. Bartlett PN (2008) In: Bartlett PN (ed) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, New York

    Google Scholar 

  39. Varnicic M et al (2014) Combined electrochemical and microscopic study of porous enzymatic electrodes with direct electron transfer mechanism. RSC Adv 4(69):36471–36479

    Article  CAS  Google Scholar 

  40. Varničić M, Vidaković-Koch T, Sundmacher K (2015) Gluconic acid synthesis in an electroenzymatic reactor. Electrochim Acta 174:480–487

    Article  CAS  Google Scholar 

  41. Varničić M, Vidaković-Koch T, Sundmacher K (2015) Corrigendum to “Gluconic acid synthesis in an Electroenzymatic reactor” [Electrochimica Acta 174 (2015) 480–487]. Electrochim Acta 176:1523

    Article  CAS  Google Scholar 

  42. Ivanov I (2012) Development of a glucose-oxygen enzymatic fuel cell. Otto von Guericke University, Magdeburg, p 118

    Google Scholar 

  43. Ivanov I, Vidaković-Koch T, Sundmacher K (2013) Alternating electron transfer mechanism in the case of high-performance tetrathiafulvalene–tetracyanoquinodimethane enzymatic electrodes. J Electroanal Chem 690:68–73

    Article  CAS  Google Scholar 

  44. Vidakovic-Koch T (2017) Energy conversion based on bio(electro)catalysts. In: Cornelia Breitkopf KS-L (ed) Springer handbook of electrochemical energy. Springer-Verlag Berlin Heidelberg, Berlin, pp 757–777

    Chapter  Google Scholar 

  45. Mondal MS, Fuller HA, Armstrong FA (1996) Direct measurement of the reduction potential of catalytically active cytochrome c peroxidase compound I: voltammetric detection of a reversible, cooperative two-electron transfer reaction. J Am Chem Soc 118(1):263–264

    Article  CAS  Google Scholar 

  46. Mondal MS, Goodin DB, Armstrong FA (1998) Simultaneous voltammetric comparisons of reduction potentials, reactivities, and stabilities of the high-potential catalytic states of wild-type and distal-pocket mutant (W51F) yeast cytochrome c peroxidase. J Am Chem Soc 120(25):6270–6276

    Article  CAS  Google Scholar 

  47. Ruzgas T et al (1995) Kinetic models of horseradish peroxidase action on a graphite electrode. J Electroanal Chem 391(1):41–49

    Article  Google Scholar 

  48. Ferapontova EE, Gorton L (2001) Effect of proton donors on direct electron transfer in the system gold electrode–horseradish peroxidase. Electrochem Commun 3(12):767–774

    Article  CAS  Google Scholar 

  49. Yu H et al (2015) Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. J Power Sources 283:84–94

    Article  CAS  Google Scholar 

  50. Lojou É, Bianco P (2004) Membrane electrodes for protein and enzyme electrochemistry. Electroanalysis 16(13–14):1113–1121

    Article  CAS  Google Scholar 

  51. De Poulpiquet A et al (2013) Exploring properties of a hyperthermophilic membrane-bound hydrogenase at carbon nanotube modified electrodes for a powerful H2/O2 biofuel cell. Electroanalysis 25(3):685–695

    Article  CAS  Google Scholar 

  52. Lojou É et al (2008) Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. JBIC, J Biol Inorg Chem 13(7):1157–1167

    Article  CAS  PubMed  Google Scholar 

  53. Luo X et al (2009) Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. JBIC, J Biol Inorg Chem 14(8):1275–1288

    Article  CAS  PubMed  Google Scholar 

  54. Lojou E (2011) Hydrogenases as catalysts for fuel cells: strategies for efficient immobilization at electrode interfaces. Electrochim Acta 56(28):10385–10397

    Article  CAS  Google Scholar 

  55. Yan Y, Su L, Mao L (2007) Multi-walled carbon nanotube-based glucose/O2 biofuel cell with glucose oxidase and Laccase as biocatalysts. J Nanosci Nanotechnol 7(4–1):1625–1630

    Article  CAS  PubMed  Google Scholar 

  56. Khan GF (1997) TTF-TCNQ complex based printed biosensor for long-term operation. Electroanalysis 9(4):325–329

    Article  CAS  Google Scholar 

  57. Khan GF (1996) Construction of SEC/CTC electrodes for direct electron transferring biosensors. Sens Actuators B Chem 36(1–3):484–490

    Article  CAS  Google Scholar 

  58. Khan GF, Ohwa M, Wernet W (1996) Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Anal Chem 68(17):2939–2945

    Article  CAS  PubMed  Google Scholar 

  59. Ivanov I, Vidaković-Koch T, Sundmacher K (2011) Direct hybrid glucose–oxygen enzymatic fuel cell based on tetrathiafulvalene–tetracyanoquinodimethane charge transfer complex as anodic mediator. J Power Sources 196(22):9260–9269

    Article  CAS  Google Scholar 

  60. Do TQN (2017) Mathematical modelling of electro-enzymatic system. Otto von Guericke University, Magdeburg

    Google Scholar 

  61. Kochius S et al (2014) Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. J Mol Catal B Enzym 103:94–99

    Article  CAS  Google Scholar 

  62. Gorton L, Domínguez E (2007) Electrochemistry of NAD(P)+/NAD(P)H. Encyclopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  63. Karyakin AA, Ivanova YN, Karyakina EE (2003) Equilibrium (NAD+/NADH) potential on poly(neutral red) modified electrode. Electrochem Commun 5(8):677–680

    Article  CAS  Google Scholar 

  64. Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56(3):1585–1590

    Article  CAS  Google Scholar 

  65. Karyakin AA et al (1999) Electropolymerized azines: part II. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis 11(8):553–557

    Article  CAS  Google Scholar 

  66. Li H, Wen H, Calabrese Barton S (2012) NADH oxidation catalyzed by electropolymerized azines on carbon nanotube modified electrodes. Electroanalysis 24(2):398–406

    Article  CAS  Google Scholar 

  67. Rincón RA et al (2011) Flow-through 3D biofuel cell anode for NAD+−dependent enzymes. Electrochim Acta 56(5):2503–2509

    Article  CAS  Google Scholar 

  68. Vuorilehto K, Lütz S, Wandrey C (2004) Indirect electrochemical reduction of nicotinamide coenzymes. Bioelectrochemistry 65(1):1–7

    Article  CAS  PubMed  Google Scholar 

  69. Salimi A et al (2009) Electrocatalytic reduction of NAD+ at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes. J Solid State Electrochem 13(3):485–496

    Article  CAS  Google Scholar 

  70. Ali I, Soomro B, Omanovic S (2011) Electrochemical regeneration of NADH on a glassy carbon electrode surface: the influence of electrolysis potential. Electrochem Commun 13(6):562–565

    Article  CAS  Google Scholar 

  71. Tosstorff A et al (2014) Mediated electron transfer with monooxygenases—insight in interactions between reduced mediators and the co-substrate oxygen. J Mol Catal B Enzym 108:51–58

    Article  CAS  Google Scholar 

  72. Tosstorff A et al (2017) Towards electroenzymatic processes involving old yellow enzymes and mediated cofactor regeneration. Eng Life Sci 17(1):71–76

    Article  CAS  Google Scholar 

  73. Çekiç SZ et al (2010) Mediated electron transfer with P450cin. Electrochem Commun 12(11):1547–1550

    Article  CAS  Google Scholar 

  74. Ströhle FW et al (2013) A computational protocol to predict suitable redox mediators for substitution of NAD(P)H in P450 monooxygenases. J Mol Catal B Enzym 88:47–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Vidakovic-Koch .

Editor information

Editors and Affiliations

Appendix: List of Symbols

Appendix: List of Symbols

A :

Amplitude (V)

a :

Internal active surface area (\( {\mathrm{m}}_{\mathrm{act}}^2\ {\mathrm{m}}_{\mathrm{geo}}^{-3}\Big) \)

Ageo :

Geometrical surface area of electrode (\( {\mathrm{m}}_{\mathrm{geo}}^2\Big) \)

c :

Volumetric concentration (mol m−3)

c DL :

Double layer capacitance (F m−2)

D :

Diffusion coefficient of species (\( {\mathrm{m}}_{\mathrm{geo}}^2\ {\mathrm{s}}^{-1}\Big) \)

E :

Electrode potential (V)

F:

Faraday’s constant = 96,485 (C mol−1)

f :

Frequency (Hz)

G :

Flow rate (m3 s−1)

g k :

Diffusion flux (k = 1,2,3) (\( \mathrm{mol}\ {\mathrm{m}}_{\mathrm{geo}}^{-2} \)s−1)

I :

Current (A)

i :

Imaginary number

Im(Z):

Imaginary part of electrochemical impedance Z (Ω m2)

j :

Current density (\( \mathrm{A}\ {\mathrm{m}}_{\mathrm{geo}}^{-2}\Big) \)

k 1, k m :

Reaction constants of enzyme substrate (m3 mol−1 s−1/m2 mol−1 s−1)

and enzyme mediator reactions

k ei :

Kinetic constant of the (s−1)

Electrochemical reaction (i = 1,2)

K M :

Michaelis-Menten constant (mol m−3)

L :

Catalyst layer thickness (m geo)

n :

Number of electrons

P :

Power density (W m−2)

r :

Reaction rate (mol s−1 m−2)

R:

Universal gas constant = 8.314 (J mol−1 K−1)

R Ω :

Electrolyte resistance (Ω m2)

Re(Z):

Real part of electrochemical impedance Z (Ω m2)

T :

Temperature (K)

U :

Cell potential (V)

v k :

Average molar velocity (k = 1,2,3) (m s−1)

w:

Rotation rate of rotating disc electrode (rad s−1)

Y:

Linear frequency response function (Ω−1 m−2)

|Z|:

Magnitude of electrochemical impedance Z (Ω m2)

Z :

Electrochemical impedance (Ω m2)

z k :

Space coordinate (k = 1,2,3)

v :

Sweep rate (V s−1)

1.1 Greek

ν:

Stoichiometric coefficient

η :

Overpotential (V)

φ:

Phase shift (o)

Γ :

Surface concentration (mol m−2)

η i :

Efficiency (i = th, ec,fuel)

\( {\Delta}_f{G}_i^o \) :

Standard Gibbs free energies of formation of component “i” (kJ mol−1)

Δr G o :

Standard Gibbs free energy change of reaction (kJ mol−1)

Δr H o :

Standard enthalpy change of reaction (kJ mol−1)

ϕE, ϕI :

Potentials of electron-and ion- conducting phases, respectively (V)

γE, γI :

Electron-and ion conductivities (\( \mathrm{S}\ {\mathrm{m}}_{\mathrm{geo}}^{-1} \))

α,β:

Transfer coefficients of electrochemical steps

δ:

Diffusion layer thickness (mgeo)

ε:

Void fraction (\( {\mathrm{m}}^3{\mathrm{m}}_{\mathrm{geo}}^{-3}\Big) \)

ι:

Local current density (\( \mathrm{A}\ {\mathrm{m}}_{\mathrm{act}}^{-2}\Big) \)

ω:

Angular frequency (rad s−1)

1.2 Super- and Sub-scripts

A,C,cell:

Anode, cathode and cell respectively

act, geo:

Active and geometrical respectively

CL, DL:

Catalyst layer and diffusion layer respectively

e0:

Electrochemical reaction step

ec:

Electrochemical

I, E:

Ion and electron conducting phase respectively

o:

Standard conditions

o,#:

At pH 7

Ohm:

Ohmic

ox,red:

Oxidized and reduced states respectively

S:

Substrate

sim, exp.:

Simulation and experiment respectively

SS:

Steady state

th:

Thermodynamic

1.3 List of Abbreviations

A:

Anode

Ag/AgCl:

Silver/silver chloride reference electrode

C:

Cathode

CC:

Current collector

CE:

Counter electrode

CL:

Catalyst layer

DET:

Direct electron transfer

DET_SS:

Direct electron transfer steady state

E:

Enzyme

EM:

Enzyme mediator complex

ES:

Enzyme substrate complex

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

GOx:

Glucose oxidase

HRP:

Horseradish peroxidase

Int:

Intermediate

Medi (i = ox,red):

Oxidized and reduced forms of a mediator

MET:

Mediated electron transfer

NAD:

Nicotinamide adenine dinucleotide

NADP:

Nicotinamide adenine dinucleotide phosphate

P:

Product

RE:

Reference electrode

RH:

Organic substrate

S:

Substrate

SAMs:

Self-assembled monolayers

SCE:

Saturated calomel electrode

SHE:

Standard hydrogen electrode

WE:

Working electrode

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vidakovic-Koch, T. (2017). Electron Transfer Between Enzymes and Electrodes. In: Harnisch, F., Holtmann, D. (eds) Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, vol 167. Springer, Cham. https://doi.org/10.1007/10_2017_42

Download citation

Publish with us

Policies and ethics