Skip to main content

Extracellular Electron Transfer and Biosensors

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 167))

Abstract

This chapter summarizes in the beginning our current understanding of extracellular electron transport processes in organisms belonging to the genera Shewanella and Geobacter. Organisms belonging to these genera developed strategies to transport respiratory electrons to the cell surface that are defined by modules of which some seem to be rather unique for one or the other genus while others are similar. We use this overview regarding our current knowledge of extracellular electron transfer to explain the physiological interaction of microorganisms in direct interspecies electron transfer, a process in which one organism basically comprises the electron acceptor for another microbe and that depends also on extended electron transport chains. This analysis of mechanisms for the transport of respiratory electrons to insoluble electron acceptors ends with an overview of questions that remain so far unanswered. Moreover, we use the description of the biochemistry of extracellular electron transport to explain the fundamentals of biosensors based on this process and give an overview regarding their status of development and applicability.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

References

  1. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early earth. Nature 395:65–67

    CAS  PubMed  Google Scholar 

  2. Prokhorova A, Sturm-Richter K, Doetsch A, Gescher J (2017) Resilience, dynamics and interactions within a multi-species exoelectrogenic model biofilm community. Appl Environ Microbiol 83(6):e03033–e03016

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913–921

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sturm G, Dolch K, Richter K, Rautenberg M, Gescher J (2012) Metal reducers and reduction targets. A short survey about the distribution of dissimilatory metal reducers and the multitude of terminal electron acceptors. Microbial metal respiration: from geochemistry to potential applications. Springer-Verlag, Heidelberg, pp 129–159

    Google Scholar 

  5. Firer-Sherwood M, Pulcu GS, Elliott SJ (2008) Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J Biol Inorg Chem 13:849–854

    CAS  PubMed  Google Scholar 

  6. Nevin KP, Lovley DR (2002) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159

    CAS  Google Scholar 

  7. Straub KL, Schink B (2003) Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiol Lett 220:229–233

    CAS  PubMed  Google Scholar 

  8. Aklujkar M, Coppi MV, Leang C et al (2013) Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology 159:515–535

    CAS  PubMed  Google Scholar 

  9. Butler JE, Young ND, Lovley DR (2010) Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11:40

    PubMed  PubMed Central  Google Scholar 

  10. Holmes DE, Chaudhuri SK, Nevin KP et al (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8:1805–1815

    CAS  PubMed  Google Scholar 

  11. Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding YHR, Hixson KK, Giometti CS et al (2006) The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim Biophys Acta Proteins Proteomics 1764:1198–1206

    CAS  Google Scholar 

  13. Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 9(1):109

    PubMed  PubMed Central  Google Scholar 

  14. Morgado L, Saraiva IH, Louro RO, Salgueiro CA (2010) Orientation of the axial ligands and magnetic properties of the hemes in the triheme ferricytochrome PpcA from G. sulfurreducens determined by paramagnetic NMR. FEBS Lett 584:3442–3445

    CAS  PubMed  Google Scholar 

  15. Zacharoff L, Chan CH, Bond DR (2016) Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107:7–13

    CAS  PubMed  Google Scholar 

  16. Levar CE, Chan CH, Mehta-Kolte MG, Bond DR (2014) An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. MBio 5(6):e02034–e02014

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Seidel J, Hoffmann M, Ellis KE et al (2012) MacA is a second cytochrome c peroxidase of Geobacter sulfurreducens. Biochemistry 51:2747–2756

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Qian XL, Reguera G, Mester T, Lovley DR (2007) Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. FEMS Microbiol Lett 277:21–27

    CAS  PubMed  Google Scholar 

  19. Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu X, Tremblay PL, Malvankar NS, Nevin KP, Lovley DR, Vargas M (2014) A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on Pili but is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol 80:1219–1224

    PubMed  PubMed Central  Google Scholar 

  21. Liu YM, Fredrickson JK, Zachara JM, Shi L (2015) Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front Microbiol 6:–1075

    Google Scholar 

  22. Liu YM, Wang ZM, Liu J et al (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6:776–785

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hartshorne RS, Reardon CL, Ross D et al (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci U S A 106:22169–22174

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Qian XL, Mester T, Morgado L et al (2011) Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. BBA-Bioenergetics 1807:404–412

    CAS  PubMed  Google Scholar 

  25. Leang C, Qian XL, Mester T, Lovley DR (2010) Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl Environ Microbiol 76:4080–4084

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    CAS  PubMed  Google Scholar 

  27. Nevin KP, Kim BC, Glaven RH et al (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4:e5628

    PubMed  PubMed Central  Google Scholar 

  28. Strycharz SM, Glaven RH, Coppi MV et al (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80:142–150

    CAS  PubMed  Google Scholar 

  29. Lovley DR (2011) Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Biotechnol 10:101–105

    Google Scholar 

  30. Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605

    PubMed  PubMed Central  Google Scholar 

  31. Rotaru AE, Shrestha PM, Liu FH et al (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ Environ Sci 7:408–415

    CAS  Google Scholar 

  32. Rotaru AE, Shrestha PM, Liu FH, Ueki T, Nevin K, Summers ZM, Lovley DR (2012) Interspecies electron transfer via hydrogen and Formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol 78:7645–7651

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rollefson JB, Stephen CS, Tien M, Bond DR (2011) Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 193:1023–1033

    CAS  PubMed  Google Scholar 

  34. Malvankar NS, Vargas M, Nevin KP et al (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579

    PubMed  Google Scholar 

  35. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    CAS  PubMed  Google Scholar 

  36. Yates MD, Strycharz-Glaven SM, Golden JP, Roy J, Tsoi S, Erickson JS, El-Naggar MY, Barton SC, Tender LM (2016) Measuring conductivity of living Geobacter sulfurreducens biofilms. Nat Nanotechnol 11:910–913

    CAS  PubMed  Google Scholar 

  37. Malvankar NS, Rotello VM, Tuominen MT, Lovley DR (2016) Reply to ‘Measuring conductivity of living Geobacter sulfurreducens biofilms’. Nat Nanotechnol 11:913–914

    CAS  PubMed  Google Scholar 

  38. Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769

    CAS  PubMed  Google Scholar 

  39. Lovley DR (2012) Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity. Biochem Soc Trans 40:1186–1190

    CAS  PubMed  Google Scholar 

  40. Malvankar NS, Tuominen MT, Lovley DR (2012) Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energ Environ Sci 5:8651–8659

    CAS  Google Scholar 

  41. Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep 4:82–88

    CAS  PubMed  Google Scholar 

  42. Shrestha PM, Rotaru AE, Aklujkar M et al (2013) Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep 5:904–910

    CAS  PubMed  Google Scholar 

  43. Vargas M, Malvankar NS, Tremblay PL et al (2013) Aromatic amino acids required for Pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):e00105–e00113

    PubMed  PubMed Central  Google Scholar 

  44. Tan Y, Adhikari RY, Malvankar NS et al (2016) Synthetic biological protein nanowires with high conductivity. Small 12:4481–4485

    CAS  PubMed  Google Scholar 

  45. Yi HN, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503

    CAS  PubMed  Google Scholar 

  46. Burns JL, DiChristina TJ (2009) Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar Typhimurium LT2. Appl Environ Microbiol 75:5209–5217

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci U S A 103:4669–4674

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240:1319–1321

    CAS  PubMed  Google Scholar 

  49. Sturm G, Richter K, Doetsch A, Heide H, Louro RO, Gescher J (2015) A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J 9:1802–1811

    PubMed  PubMed Central  Google Scholar 

  50. Myers CR, Myers JM (1997) Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179:1143–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Beliaev AS, Klingeman DM, Klappenbach JA et al (2005) Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 187:7138–7145

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schuetz B, Schicklberger M, Kuermann J, Spormann AM, Gescher J (2009) Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75:7789–7796

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McMillan DGG, Marritt SJ, Firer-Sherwood MA et al (2013) Protein-protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J Am Chem Soc 135:10550–10556

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Alves MN, Neto SE, Alves AS et al (2015) Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. Front Microbiol 6:665. https://doi.org/10.3389/fmicb.2015.00665

    Article  PubMed  PubMed Central  Google Scholar 

  55. Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474

    CAS  PubMed  Google Scholar 

  56. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973

    CAS  PubMed  PubMed Central  Google Scholar 

  57. von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Google Scholar 

  58. Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48

    PubMed  Google Scholar 

  59. Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284:28865–28873

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6(2):e16649

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Breuer M, Rosso KM, Blumberger J, Butt JN (2015) Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface 12:20141117

    PubMed  PubMed Central  Google Scholar 

  62. Clarke TA, Edwards MJ, Gates AJ et al (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci U S A 108:9384–9389

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Edwards MJ, White GF, Norman M et al (2015) Redox linked Flavin sites in extracellular Decaheme proteins involved in microbe-mineral electron transfer. Sci Rep 5:11677

    PubMed  PubMed Central  Google Scholar 

  64. Okamoto A, Hashimoto K, Nealson KH, Nakamura R (2013) Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci U S A 110:7856–7861

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Okamoto A, Nakamura R, Nealson KH, Hashimoto K (2014) Bound Flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem 1:1808–1812

    CAS  Google Scholar 

  66. Okamoto A, Kalathil S, Deng X, Hashimoto K, Nakamura R, Nealson KH (2014) Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep 4

    Google Scholar 

  67. Ding M, Shiu HY, Li SL et al (2016) Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 10:9919–9926

    CAS  PubMed  Google Scholar 

  68. Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295

    CAS  Google Scholar 

  69. Carlson HK, Iavarone AT, Gorur A et al (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram- positive bacteria. Proc Natl Acad Sci U S A 109:1702–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wrighton KC, Thrash JC, Melnyk RA et al (2011) Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77:7633–7639

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lusk BG, Parameswaran P, Popat SC, Rittmann BE, Torres CI (2016) The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica. Bioelectrochemistry 112:47–52

    CAS  PubMed  Google Scholar 

  72. Clark Jr LC, Lyons C (1962) Electrode systems for continuous monitoring un cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    CAS  PubMed  Google Scholar 

  73. Setford SJ, Newman JD (2005) Enzyme biosensors. vol 17, pp 29–60

    Google Scholar 

  74. Turner AP, Karube I, Wilson GS (1987) Biosensors fundamentals and applications. Oxford Science Publications, Oxford, Engalnd

    Google Scholar 

  75. Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    CAS  PubMed  Google Scholar 

  76. Luong JH, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500

    CAS  PubMed  Google Scholar 

  77. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    CAS  PubMed  Google Scholar 

  78. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    CAS  PubMed  Google Scholar 

  79. Kumlanghan A, Kanatharana P, Asawatreratanakul P, Mattiasson B, Thavarungkul P (2008) Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry. Enzyme Microb Technol 42:483–491

    CAS  Google Scholar 

  80. Nakamura H, Suzuki K, Ishikuro H et al (2007) A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72:210–216

    CAS  PubMed  Google Scholar 

  81. APHA (1998) Standard methods for the examination of waters and wastewaters, vol 20. American Public Health Association, Washington

    Google Scholar 

  82. SIS (1979) Water analysis - determination of biochemical oxygen demand, BOD, of water dilution method (Svensk standard SS 02 81 43 E), vol 1. The Swedish Standards Institution, Stockholm

    Google Scholar 

  83. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    CAS  PubMed  Google Scholar 

  84. Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biochemical oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    CAS  PubMed  Google Scholar 

  85. Clark Jr LC (1956) Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Artif Intern Organs 2(1):41–48

    Google Scholar 

  86. Karube I, Matsunaga T, Mitsuda S, Suzuki S (1977) Microbial electrode BOD sensors. Biotechnol Bioeng XIX:1535–1547

    Google Scholar 

  87. Liu J, Mattiasson B (2002) Microbial BOD sensors for wastewater analysis. Water Res 36:3786–3802

    CAS  PubMed  Google Scholar 

  88. Ponomareva ON, Arlyapov VA, Alferov VA, Reshetilov AN (2011) Microbial biosensors for detection of biological oxygen demand (a review). Appl Biochem Microbiol 47:1–11

    CAS  Google Scholar 

  89. Liu J, Bjornsson L, Mattiasson B (2000) Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens Bioelectron 14(12):883–893

    CAS  PubMed  Google Scholar 

  90. Chee G, Nomura Y, Karube I (1999) Biosensor for the estimation of low biochemical oxygen demand. Anal Chim Acta 379:185–191

    CAS  Google Scholar 

  91. Kulys J, Kadziauskiene K (1980) Yeast BOD sensor. Biotechnol Bioeng XXII:221–226

    Google Scholar 

  92. Marty JL, Olive D, Asano Y (1997) Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values. Environ Technol 18:333–337

    CAS  Google Scholar 

  93. Riedel K, Renneberg R, Kühn M, Scheller F (1988) A fast estimation of biochemical oxygen demandusing microbial sensors. Appl Microbiol Biotechnol 28:316–318

    CAS  Google Scholar 

  94. Kang KH, Jang JK, Pham TH, Moon H, Chang IS, Kim BH (2003) A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett 25:1357–1361

    CAS  PubMed  Google Scholar 

  95. Grzebyk M, Poźniak G (2005) Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep Purif Technol 41:321–328

    CAS  Google Scholar 

  96. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    CAS  PubMed  Google Scholar 

  97. Tkac J, Vostiar I, Gorton L, Gemeiner P, Sturdik E (2003) Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosens Bioelectron 18:1125–1134

    CAS  PubMed  Google Scholar 

  98. Trosok SP, Driscoll BT, Luong JHT (2001) Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement. Appl Microbiol Biotechnol 56:550–554

    CAS  PubMed  Google Scholar 

  99. Yoshida N, Hoashi J, Morita T, McNiven S, Nakamura H, Karube I (2001) Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. J Biotechnol 88:269–275

    CAS  PubMed  Google Scholar 

  100. Pasco NF, Baronian K, Jeffries C, Hay J (2000) Biochemical mediator demand - a novel rapid alternative for measuring biochemical oxygen demand. Appl Microbiol Biotechnol 53:613–618

    CAS  PubMed  Google Scholar 

  101. Morris K, Zhao H, John R (2003) The use of a mixed microbial consortium in a rapid ferricyanide mediated biochemical oxygen demand assay. Trans Ecol Environ:65

    Google Scholar 

  102. Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    CAS  PubMed  Google Scholar 

  103. Pasco NF, Weld RJ, Hay JM, Gooneratne R (2011) Development and applications of whole cell biosensors for ecotoxicity testing. Anal Bioanal Chem 400:931–945

    CAS  PubMed  Google Scholar 

  104. Kumlanghan A, Liu J, Thavarungkul P, Kanatharana P, Mattiasson B (2007) Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22:2939–2944

    CAS  PubMed  Google Scholar 

  105. Di Lorenzo M, Curtis TP, Head IM, Scott K (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145–3154

    PubMed  Google Scholar 

  106. Di Lorenzo M, Thomson AR, Schneider K, Cameron PJ, Ieropoulos I (2014) A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens Bioelectron 62:182–188

    PubMed  Google Scholar 

  107. Kim M, Sik Hyun M, Gadd GM, Joo Kim H (2007) A novel biomonitoring system using microbial fuel cells. J Environ Monit 9:1323–1328

    CAS  PubMed  Google Scholar 

  108. Stein NE, Hamelers HMV, van Straten G, Keesman KJ (2012) On-line detection of toxic components using a microbial fuel cell-based biosensor. J Process Control 22:1755–1761

    CAS  Google Scholar 

  109. Wang B, Barahona M, Buck M (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron 40:368–376

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hernandez Leal L, Soeter AM, Kools SA et al (2012) Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius. Water Res 46:1038–1044

    CAS  PubMed  Google Scholar 

  111. Matsunaga T, Takeyama H, Nakao T, Yamazawa A (1999) Screening of marine microalgae for bioremediation of cadmium- polluted seawater. J Biotechnol 70:33–38

    CAS  PubMed  Google Scholar 

  112. Qu R, Wang X, Liu Z, Yan Z, Wang Z (2013) Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. J Hazard Mater 262:288–296

    CAS  PubMed  Google Scholar 

  113. Zhang H, Cao H, Meng Y, Jin G, Zhu M (2012) The toxicity of cadmium (Cd(2)(+)) towards embryos and pro-larva of soldatov’s catfish (Silurus Soldatovi). Ecotoxicol Environ Saf 80:258–265

    CAS  PubMed  Google Scholar 

  114. Lee H, Yang W, Wei X, Fraiwan A, Choi S (2015) A microsized microbial fuel cell based biosensor for fast and sensitive detection of toxic substances in water

    Google Scholar 

  115. Patil S, Harnisch F, Schroder U (2010) Toxicity response of electroactive microbial biofilms - a decisive feature for potential biosensor and power source applications. ChemPhysChem 11:2834–2837

    CAS  PubMed  Google Scholar 

  116. Davila D, Esquivel JP, Sabate N, Mas J (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26:2426–2430

    CAS  PubMed  Google Scholar 

  117. Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590

    CAS  PubMed  Google Scholar 

  118. Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol Lett 30:1385–1390

    CAS  PubMed  Google Scholar 

  119. Holtmann D, Sell D (2002) Detection of the microbial activity of aerobic heterotrophic, anoxic heterotrophic and aerobic autotrophic activated sludge organisms with an electrochemical sensor. Biotechnol Lett 24:1313–1318

    CAS  Google Scholar 

  120. Holtmann D, Schrader J, Sell D (2006) Quantitative comparison of the signals of an electrochemical bioactivity sensor during the cultivation of different microorganisms. Biotechnol Lett 28:889–896

    CAS  PubMed  Google Scholar 

  121. Golitsch F, Bücking C, Gescher J (2013) Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47:285–291

    CAS  PubMed  Google Scholar 

  122. Bücking C, Popp F, Kerzenmacher S, Gescher J (2010) Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 306:144–151

    PubMed  Google Scholar 

  123. Webster DP, TerAvest MA, Doud DF et al (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Sturm-Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Simonte, F., Sturm, G., Gescher, J., Sturm-Richter, K. (2017). Extracellular Electron Transfer and Biosensors. In: Harnisch, F., Holtmann, D. (eds) Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, vol 167. Springer, Cham. https://doi.org/10.1007/10_2017_34

Download citation

Publish with us

Policies and ethics