Skip to main content

Platforms for Manufacturing Allogeneic, Autologous and iPSC Cell Therapy Products: An Industry Perspective

  • Chapter
  • First Online:
New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins

Abstract

As cell therapy processes mature from benchtop research protocols to industrial processes capable of manufacturing market-relevant numbers of doses, new cell manufacturing platforms are required. Here we give an overview of the platforms and technologies currently available to manufacture allogeneic cell products, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), and technologies for mass production of autologous cell therapies via scale-out. These technologies include bioreactors, microcarriers, cell separation and cryopreservation equipment, molecular biology tools for iPSC generation, and single-use controlled-environment systems for autologous cell production. These platforms address the challenges of manufacturing cell products in greater numbers while maintaining process robustness and product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rowley J, Abraham E, Campbell A, Brandwein H, Oh S (2012) Meeting lot-size challenges of manufacturing adherent cells for therapy. BioProcess Int 10:16–22

    Google Scholar 

  2. Jung S, Panchalingam KM, Wuerth RD, Rosenberg L, BehieL A (2012) Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnol Appl Biochem 59(2):106–1120

    Google Scholar 

  3. Peiman H, Viswanathan S (2016) Bioreactor for scale-up: process control. In: Mesenchymal stromal cells: translational pathways to clinical adoption. Academic Press, London

    Google Scholar 

  4. GE Healthcare/Amersham Biosciences (2005) Microcarrier cell culture: principles and methods. GE Healthcare/Amersham Biosciences, Pittsburgh

    Google Scholar 

  5. Eibes G, dosSantos F, Andrade PZ, Boura JS, Abecasis MM, DaSilva CL et al (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146(4):194-197

    Google Scholar 

  6. Buckland KF, Bobby Gaspar H (2014) Gene and cell therapy for children–new medicines, new challenges? Adv Drug Deliv Rev 73:162–169

    CAS  PubMed Central  Google Scholar 

  7. Sharpe M, Mount N (2015) Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 8(4):337–350

    CAS  PubMed Central  Google Scholar 

  8. Kharaziha P, Hellström PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F, et al (2009) Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol 21:1199–1205

    CAS  Google Scholar 

  9. Peng L, Xie D-Y, Lin BL, Liu J, Zhu HP, Xie C, et al (2011) Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology 54:820–828

    Google Scholar 

  10. Yamada Y, Ueda M, Hibi H, Baba S (2006) A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int J Periodontics Restorative Dent 26:363–369

    Google Scholar 

  11. Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D, et al (2010) Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19:317–322

    CAS  Google Scholar 

  12. Bonab M, Sahraian M, Aghsaie A, Karvigh S, Hosseinian S, Nikbin B, et al (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7(6):407–414

    CAS  Google Scholar 

  13. Gupta P, Das A, Chullikana A, Majumdar A (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):25

    CAS  PubMed Central  Google Scholar 

  14. Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T (2004) Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 24(3b):1861–1871

    Google Scholar 

  15. Pietra G, Mazini C, Vitale M, Balsamo M, Ognio E, Boitano M, Queirolo P, Moretta L, Mingari MC (2009) Natural killer cells kill human melanoma cells with characteristics of cancer stem cells. Int Immunol 21(7):793–801

    CAS  Google Scholar 

  16. Dewan M, Terunuma H, Takada M, Tanaka Y, Abe H, Sata T, Toi M, Yamamoto N (2007) Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo. Breast Cancer Res Treat 104(3):267–275

    CAS  Google Scholar 

  17. Palucka K, Banchereau J (2013) Review: dendritic-cell-based therapeutic cancer vaccines. Immunity 39(1):38–48

    CAS  PubMed Central  Google Scholar 

  18. Maus MV, Levine BL (2016) Chimeric antigen receptor T-Cell therapy for the community Oncologist. Oncologist 21:608–617

    CAS  PubMed Central  Google Scholar 

  19. Bersenev A, Levine BL (2012) Convergence of gene and cell therapy. Regen Med 7(6 Suppl):50–56

    CAS  Google Scholar 

  20. Porter DL et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139

    PubMed Central  Google Scholar 

  21. Melenhorst JJ, Levine BL (2013) Innovation and opportunity for chimeric antigen receptor targeted T cells. Cytotherapy 15(9):1046–1053

    CAS  Google Scholar 

  22. Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    CAS  PubMed Central  Google Scholar 

  23. Levine BL (2015) Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther 22(2):79–84

    CAS  Google Scholar 

  24. Levine BL, June CH (2013) Perspective: assembly line immunotherapy. Nature 498(7455):S17

    CAS  Google Scholar 

  25. Lapteva N, Vera JF (2011) Optimization manufacture of virus- and tumor-specific T cells. Stem Cells Int 2011:1–8

    Google Scholar 

  26. Kaiser AD et al (2015) Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther 22(2):72–78

    CAS  PubMed Central  Google Scholar 

  27. Foley L, Whitaker M (2012) Concise review: cell therapies: the route to widespread adoption. Stem Cells Transl Med 1(5):438–447

    CAS  PubMed Central  Google Scholar 

  28. Tumaini B et al (2013) Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy 15(11):1406–1415

    CAS  PubMed Central  Google Scholar 

  29. Weber J, Atkins M, Hwu P, Radvanyi L, Sznol M, Yee C (2011) White paper on adoptive cell therapy for cancer with tumor-infiltrating lymphocytes:areport of the CTEP subcommittee on adoptive cell therapy. Clin Cancer Res 17(7):1664–1673

    CAS  Google Scholar 

  30. Apel M, Brüning M, Granzin M, Essl M, Stuth J, Blaschke J, Spiegel I, Muller S, Kabaha E, Fahrendorff E, Miltenyi S, Schmitz J, Balshusemann D, Huppert V (2013) Integrated clinical scale manufacturing system for cellular products derived by magnetic cell separation, centrifugation and cell culture. Chem Ing Tech 85(1-2):103–110

    CAS  Google Scholar 

  31. Freeman M, Fuerst M (2012) Does the FDA have regulatory authority over adult autologous stem cell therapies? 21 CFR 1271 and the emperor’s new clothes. J Transl Med 10:60

    PubMed Central  Google Scholar 

  32. Salmikangas P, Celis P (2011) Current challenges in the development of novel cell-based medicinal products. Regul Rapp 8(7/8):4–7

    Google Scholar 

  33. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    CAS  Google Scholar 

  34. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CAS  Google Scholar 

  35. Rao M (2007) Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues. Gene Ther 15:82–88

    Google Scholar 

  36. Rao M, Condic ML (2008) Alternative sources of pluripotent stem cells: scientific solutions to an ethical dilemma. Stem Cells Dev 17:1–10

    Google Scholar 

  37. Ellerström C, Strehl R, Moya K, Andersson K, Bergh C, et al (2006) Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24:2170–2176

    Google Scholar 

  38. Chen VC, Couture SM, Ye J, Lin Z, Hua G, et al (2012) Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 8:388–402

    CAS  Google Scholar 

  39. Carpenter MK, Rao MS (2015) Concise review: making and using clinically compliant pluripotent stem cell lines. Stem Cells Transl Med 4:381–388

    CAS  PubMed Central  Google Scholar 

  40. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    CAS  Google Scholar 

  41. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    CAS  Google Scholar 

  42. Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, et al (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33:58–63

    CAS  Google Scholar 

  43. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429

    CAS  PubMed Central  Google Scholar 

  44. Dowey SN, Huang X, Chou BK, Ye Z, Cheng L (2012) Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 7:2013–2021

    CAS  PubMed Central  Google Scholar 

  45. Baghbaderani BA, Tian X, Neo BH, Burkall A, Dimezzo T, et al (2015) cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Rep 5:647–659

    CAS  Google Scholar 

  46. Baghbaderani BA, Rao MS, Fellner T (2015) Manufacturing human induced pluripotent stem cells for clinical applications. BioProcess Int 13:10–21

    CAS  Google Scholar 

  47. Wang S, Zou C, Fu L, Wang B, An J, et al (2015) Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov 1:15012

    PubMed Central  Google Scholar 

  48. Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, et al (2013) Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 3:646–650

    CAS  PubMed Central  Google Scholar 

  49. Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439

    CAS  PubMed Central  Google Scholar 

  50. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    CAS  Google Scholar 

  51. Li W, Chen S, Li JY (2015) Human induced pluripotent stem cells in Parkinson’s disease: a novel cell source of cell therapy and disease modeling. Prog Neurobiol 134:161–177

    CAS  Google Scholar 

  52. Freyer N, Knospel F, Strahl N, Amini L, Schrade P, et al (2016) Hepatic differentiation of human induced pluripotent stem cells in a perfused three-dimensional multicompartment bioreactor. Biores Open Access 5:235–248

    CAS  PubMed Central  Google Scholar 

  53. Sugita S, Iwasaki Y, Makabe K, Kamao H, Mandai M, et al (2016) Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Reports 7:635–648

    CAS  PubMed Central  Google Scholar 

  54. Barbuti A, Benzoni P, Campostrini G, Dell’Era P (2016) Human derived cardiomyocytes: a decade of knowledge after the discovery of induced pluripotent stem cells. Dev Dyn 245:1145–1158

    CAS  Google Scholar 

  55. Batta K, Menegatti S, Garcia-Alegria E, Florkowska M, Lacaud G, et al (2016) Concise review: recent advances in the in vitro derivation of blood cell populations. Stem Cells Transl Med 5:1330–1337

    CAS  PubMed Central  Google Scholar 

  56. Baghbaderani BA, Syama A, Sivapatham R, Pei Y, Mukherjee O, et al (2016) Detailed characterization of human induced pluripotent stem cells manufactured for therapeutic applications. Stem Cell Rev 12:394–420

    CAS  PubMed Central  Google Scholar 

  57. O’Hara DM, Xu Y, Liang Z, Reddy MP, Wu DY, et al (2011) Recommendations for the validation of flow cytometric testing during drug development: II assays. J Immunol Methods 363:120–134

    Google Scholar 

  58. Pease S, Braghetta P, Gearing D, Grail D, Williams RL (1990) Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol 141:344–352

    CAS  Google Scholar 

  59. Chin AC, Padmanabhan J, Oh SK, Choo AB (2010) Defined and serum-free media support undifferentiated human embryonic stem cell growth. Stem Cells Dev 19:753–761

    CAS  Google Scholar 

  60. Goh PA, Caxaria S, Casper C, Rosales C, Warner TT, et al (2013) A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS One 8:e81622

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eytan Abraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abraham, E., Ahmadian, B.B., Holderness, K., Levinson, Y., McAfee, E. (2017). Platforms for Manufacturing Allogeneic, Autologous and iPSC Cell Therapy Products: An Industry Perspective. In: Kiss, B., Gottschalk, U., Pohlscheidt, M. (eds) New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins. Advances in Biochemical Engineering/Biotechnology, vol 165. Springer, Cham. https://doi.org/10.1007/10_2017_14

Download citation

Publish with us

Policies and ethics