Skip to main content

Downstream Processing Technologies/Capturing and Final Purification

Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification

  • Chapter
  • First Online:
Book cover New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 165))

Abstract

Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered.

Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wilson ID, Allard ER, Cooke M, Poole CF (2000) Encyclopedia of separation science. Academic, San Diego

    Google Scholar 

  2. Cohn EJ (1947) The separation of blood into fractions of therapeutic value. Ann Int Med 26:341–352

    CAS  PubMed  Google Scholar 

  3. Constantino P (2002) Basel, Switzerland Patent No 20050106181 A1

    Google Scholar 

  4. Hagen AJ, Oliver CN, Sitrin R (1997) Optimization and scale-up of solvent extraction in purification of hepatitis A virus (VAQTA™). Biotechnol Bioeng 56:83–88

    CAS  PubMed  Google Scholar 

  5. Kniskern PJ, Miller WJ, Hagopian A, Charlotte C, Hennessey J, John P et al (1998) US Patent No 5,847,112

    Google Scholar 

  6. Merieux I (1980) Belgium Patent No B74899

    Google Scholar 

  7. Yavordios D, Cousin M (1983) France Patent No. 0071515A1

    Google Scholar 

  8. Stern SA, Noble RD (1995) Membrane separations technology. Principles and applications. Elsevier, Amsterdam

    Google Scholar 

  9. Peterson EA, Sober HA (1954) Chromatography of proteins. I Cellulose ion-exchange; adsorbents. J Am Chem Soc 78(4):751–755

    Google Scholar 

  10. Porath J, Flodin P (1959) Gel filtration: a method for desalting and group separation. Nature 183:1657

    CAS  PubMed  Google Scholar 

  11. Lea DJ, Sehon AH (1961) Preparation of synthetic gels for chromatography of macromolecules. Can J Chem 40:159

    Google Scholar 

  12. Vaughan MF (1960) Fractionation of polystyrene by gel filtration. Nature 188:55

    CAS  Google Scholar 

  13. Hjerten S (1961) Agarose as an anticonvection agent in zone electrophoresis. Biochim Biophys Acta 53(3):514–517

    CAS  PubMed  Google Scholar 

  14. Hjerten S (1964) The preparation of agarose spheres for the chromatography of molecules and particles. Biochim Biophys Acta 79:393–398

    CAS  PubMed  Google Scholar 

  15. March SC, Parikh I, Cuatrecasas P (1974) Affinity chromatography — old problems and new approaches- in immobilized biochemicals and affinity chromatography- part of the series Advances in Experimental Medicine and Biology (Vol. 42): Springer

    Google Scholar 

  16. Williams KW, Smith RC (1975) Recent advances in column chromatography. Prog Med Chem 12:105–158

    CAS  PubMed  Google Scholar 

  17. Hofstee BH (1973) Protein binding by agarose carrying hydrophobic groups in conjunction with charges. Biochem Biophys Res Commun 50(3):751–757

    CAS  PubMed  Google Scholar 

  18. Er-El Z, Zaidenzaig Y, Shaltiel S (1972) Hydrocarbon-coated sepharoses. Use in the purification of glycogen phosphorylase. Biochem Biophys Res Commun 49(2):383–390

    CAS  PubMed  Google Scholar 

  19. Hjerten S (1973) Some general aspects of hydrophobic interaction chromatography. J Chromatogr A:325–331

    Google Scholar 

  20. Yon RJ (1972) Chromatography of lipophilic proteins on adsorbents containing mixed hydrophobic and ionic groups. Biochem J 126(3):765–767

    CAS  PubMed  Google Scholar 

  21. Gagnon P (2012) Technology trends in antibody purification. J Chromatogr A 1221:57–70

    CAS  PubMed  Google Scholar 

  22. Gottschalk U (2011) The future of downstream processing. pharmtech.com. Retrieved from http://www.pharmtech.com/print/212418?page=full

  23. Jon HC, Zarbis-Papastoitsis G (2011) Advances in the production and downstream processing of antibodies. N Biotechnol 28(5)

    Google Scholar 

  24. Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B 848:48–63

    CAS  Google Scholar 

  25. Marichal-Gallardo PA, Alvarez MM (2012) State-of-the-art in downstream processing of monoclonal antibodies: process trends in design and validation. Biotechnol Prog 28(4):899–916

    CAS  PubMed  Google Scholar 

  26. Zhou JX, Tressel T, Yang X, Seewoester T (2008) Implementation of advanced technologies in commercial monoclonal antibody production. Biotechnol J 3:1185–1200

    CAS  PubMed  Google Scholar 

  27. Kelley B (2007) Very large scale monoclonal antibody purification: the case for conventional unit operations. Biotechnol Prog 23(5):995–1008. doi:10.1021/bp070117s

    Article  CAS  PubMed  Google Scholar 

  28. Shukla AA, Thoemmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28(5):253–261

    CAS  PubMed  Google Scholar 

  29. Banholzer WF, Vosejpka LJ (2011) Risk taking and effective R&D management. Annu Rev Chem Biomol Eng 2:173–188

    PubMed  Google Scholar 

  30. Hueske A-K, Endrikat J, Guenther E (2015) External environment, the innovating organization, and its individuals: a multilevel model for identifying innovation barriers accounting for social uncertainties. J Eng Technol Manage 35:45–70

    Google Scholar 

  31. Rogers M (2012) Energy = Innovation: 10 disruptive technologies. Sustainability & Resource Productivity Summer

    Google Scholar 

  32. Saunila M, Ukko J (2014) Intangible aspects of innovation capability in SMEs: impacts of size and industry. J Eng Technol Manage 33:32–46

    Google Scholar 

  33. Story VM, Daniels K, Zolkiewski J, Daintyd AJ (2014) The barriers and consequences of radical innovations: introduction to the issue. Ind Mark Manag 24:1271–1277

    Google Scholar 

  34. Weiss JC, Dale BC (1998) Diffusing against mature technology: Issues and Strategy. Ind Mark Manag 27:293–304

    Google Scholar 

  35. Tswett M (1903) O novoy kategorii adsorbtsionnykh yavleny i o primenenii ikh k biokkhimicheskomu analizu (A new category of adsorption phenomena and their use in biochemical analysis). Trudy Varhavskago Obshchestva estevoispytatelei Otd B 14:20–39

    Google Scholar 

  36. Curling J (2007) Process chromatography: five decades of innovation. BioPharm Int 13–18:48

    Google Scholar 

  37. Guiochon G, Felinger A, Shirazi DG, Katti AM (2006) Introduction. In: Fundamentals of preparative and nonlinear chromatography. Academic

    Google Scholar 

  38. Grace JR, Leckner B, Zhu J, Cheng Y (2005) Fluidized beds. In: Multiphase flow handbook. CRC Press

    Google Scholar 

  39. Bartels CR, Kleiman G, Irish DB, Korzun JN (1957) United States/New York Patent No. US 2786831 A

    Google Scholar 

  40. Buiis A, Wesselingh JA (1980) Batch fluidized ion-exchange columns for streams containing suspended particles. J Chromatogr 201:319–327

    Google Scholar 

  41. Burns MA, Graves DJ (1985) Continuous affinity chromatography using a magnetically stabilized fluidized bed. Biotechnol Prog 1:95–103

    CAS  PubMed  Google Scholar 

  42. Draeger MN, Chase HA (1990) Liquid fluidized beds for protein purification. Chem Eng Symp Ser No, 1, 12.11–12.12

    Google Scholar 

  43. Nixon L, Koval CA, Xu L, Noble RD, Slaff GS (1991) The effects of magnetic stabilization on the structure and performance of fluidized beds. Bioseparations 2:217–230

    CAS  Google Scholar 

  44. Hjorth R (1997) Expanded-bed adsorption in industrial bioprocessing: recent developments. Trends Biotechnol 15:230–235

    CAS  PubMed  Google Scholar 

  45. Noppe W, Van Damme U, Gent N, Geeraerts F, Vanhoorelbeke K, Deckmyn H (2003) Biology and life sciences. In: Downstream: EBA '02 abstracts: Extended reports from the 4th international conference on expanded bed adsorption, St Petersburg, 2002. Amersham Biosciences, Uppsala

    Google Scholar 

  46. Flickinger MC (2013) Downstream industrial biotechnology: recovery and purification. Wiley

    Google Scholar 

  47. Silver N (2012) The signal and the noise. The Penguin Press, New York

    Google Scholar 

  48. Fee CJ, Nawada S, Dimartino S (2014) 3D printed porous media columns with fine control of column packing geometry. J Chromatogr A 1333:18–24

    CAS  PubMed  Google Scholar 

  49. Rathore AV, Velayudhan A (2003) In: Cazes J (ed) Scale-up and optimization in preparative chromatography. Marcel Dekker, Inc

    Google Scholar 

  50. Allmendinger R, Simaria AS, Turner R, Farid SS (2014) Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture. J Chem Technol Biotechnol 89(10):1481–1490. doi:10.1002/jctb.4267

    Article  CAS  PubMed  Google Scholar 

  51. Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B Analyt Technol Biomed Life Sci 848(1):8–18. doi:10.1016/j.jchromb.2006.07.037

    Article  CAS  PubMed  Google Scholar 

  52. Hammerschmidt N, Tscheliessnig A, Sommer R, Helk B, Jungbauer A (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9(6):766–775. doi:10.1002/biot.201300480

    Article  CAS  PubMed  Google Scholar 

  53. Liu S, Simaria AS, Farid SS, Papageorgiou LG (2013) Designing cost-effective biopharmaceutical facilities using mixed-integer optimization. Biotechnol Prog 29(6):1472–1483. doi:10.1002/btpr.1795

    Article  CAS  PubMed  Google Scholar 

  54. Schugerl K, Hubbuch J (2005) Integrated bioprocesses. Curr Opin Microbiol 8(3):294–300. doi:10.1016/j.mib.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  55. Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 1(5):443–452

    PubMed  Google Scholar 

  56. Werner RG (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol 113(1-3):171–182. doi:10.1016/j.jbiotec.2004.04.036

    Article  CAS  PubMed  Google Scholar 

  57. Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. MAbs 2(5):480–499

    PubMed  Google Scholar 

  58. Lu Y, Williamson B, Gillespie R (2009) Recent advancement in application of hydrophobic interaction chromatography for aggregate removal in industrial purification process. Curr Pharm Biotechnol 10(4):427–433

    PubMed  Google Scholar 

  59. Nfor BK, Verhaert PD, van der Wielen LA, Hubbuch J, Ottens M (2009) Rational and systematic protein purification process development: the next generation. Trends Biotechnol 27(12):673–679. doi:10.1016/j.tibtech.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  60. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies--application of platform approaches. J Chromatogr B Analyt Technol Biomed Life Sci 848(1):28–39. doi:10.1016/j.jchromb.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  61. Singh N, Arunkumar A, Chollangi S, Tan ZG, Borys M, Li ZJ (2015) Clarification technologies for monoclonal antibody manufacturing processes: current state and future perspectives. Biotechnol Bioeng. doi:10.1002/bit.25810

  62. Tao Y, Ibraheem A, Conley L, Cecchini D, Ghose S (2014) Evaluation of high-capacity cation exchange chromatography for direct capture of monoclonal antibodies from high-titer cell culture processes. Biotechnol Bioeng 111(7):1354–1364. doi:10.1002/bit.25192

    Article  CAS  PubMed  Google Scholar 

  63. Wang F, Yan X, Song L, Wang P, Lu D, Feng J, et al. (2013) A novel ‘pipeline’ system for downstream preparation of therapeutic monoclonal antibodies. Biotechnol Lett 35(9):1411–1418. doi:10.1007/s10529-013-1234-2

    Article  CAS  PubMed  Google Scholar 

  64. Aaberg PM, Houshmand H, Ljungloef A, Van AJ (2005) A method for chromatographic purification, US20,070,213,513 A1

    Google Scholar 

  65. Agner E (2003) Method for displacement chromatography, US6,576,134 B1

    Google Scholar 

  66. Cramer SM, Moore JA, Kundu A, Li Y, Jayaraman G (1995) Displacement chromatography of proteins using low molecular weight displacers, US5,478,924 A

    Google Scholar 

  67. Cramer SM, Shukla AA, Sunasara KM (2001) Low molecular weight displacers for protein purification in hydrophobic interaction and reversed phase chromatographic systems, US6,239,262 B1

    Google Scholar 

  68. Eriksson K, Johansson HJ, Olsson U (2007) Method of separating monomeric protein(s), US20,090,264,630 A1

    Google Scholar 

  69. Godavarti R, Iskra T (2006) Methods of purifying fc region containing proteins, US20,070,082,367 A1

    Google Scholar 

  70. Poll DJ, Harding DRK, Hancock WS (1986) High performance liquid chromatography mobile phase, US4,909,941 A

    Google Scholar 

  71. Shujun S (2013) Arginine wash in protein purification using affinity chromatography. US Patents No. 8,350,013 B2

    Google Scholar 

  72. Staby A (2000) Ion exchange chromatography of proteins and peptides with an organic modifier in the elution step, US6,451,987 B1

    Google Scholar 

  73. Sun S, Gallo C (2011) Arginine derivative wash in protein purification using affinity chromatography. US Patent No. 7,714,111

    Google Scholar 

  74. Sundberg R, Hopfer R (2004) Removal of bacterial endotoxin in a protein solution by immobilized metal affinity chromatography, US20,040,112,832 A1

    Google Scholar 

  75. Gillespie R, Vunnum S, Nguyen T, Macneil S (2012). J Chromatogr A 1251:101–110

    CAS  PubMed  Google Scholar 

  76. Van Alstine J, Houshmand H, Ljunglof A, Aberg PM (2007) Method for chromatographic purification, US20,070,213,513 A1

    Google Scholar 

  77. Wang C, Coppola G, Chumsae C (2015) Protein purification using displacement chromatography: Google Patents

    Google Scholar 

  78. Satzer P, Tscheließnigg A, Sommer R, Jungbauer A (2014) Separation of recombinant antibodies from DNA using divalent cations. Eng Life Sci 14(5)

    Google Scholar 

  79. Tsumoto K, Ejima D, Senczuk AM, Kita Y, Arakawa T (2007) Effects of salts on protein–surface interactions: applications for column chromatography. J Pharm Sci 96(7):1677–1690. doi:10.1002/jps.20821

    Article  CAS  PubMed  Google Scholar 

  80. Johansson K, Frederiksen SS, Degerman M, Breil MP, Mollerup JM, Nilsson B (2015) Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants. J Chromatogr A 1381:64–73. doi:10.1016/j.chroma.2014.12.081

    Article  CAS  PubMed  Google Scholar 

  81. Ngo TT, Narinesingh D (2008) Kosmotropes enhance the yield of antibody purified by affinity chromatography using immobilized bacterial immunoglobulin binding proteins. J Immunoassay Immunochem 29(1):105–115. doi:10.1080/15321810701735203

    Article  CAS  PubMed  Google Scholar 

  82. Arakawa T, Tsumoto K, Nagase K, Ejima D (2007) The effects of arginine on protein binding and elution in hydrophobic interaction and ion-exchange chromatography. Protein Expr Purif 54(1):110–116. doi:10.1016/j.pep.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  83. Cochet S, Hasnaoui MH, Debbia M, Kroviarski Y, Lambin P, Cartron JP, Bertrand O (1994) Chromatography of human immunoglobulin G on immobilized drimarene rubine R/K-5BL. Study of mild, efficient elution procedures. J Chromatogr A 663(2):175–186

    CAS  PubMed  Google Scholar 

  84. Lin M-F, Williams C, Murray MV, Ropp PA (2005) Removal of lipopolysaccharides from protein–lipopolysaccharide complexes by nonflammable solvents. J Chromatogr B 816(1–2):167–174. doi:10.1016/j.jchromb.2004.11.029

    Article  CAS  Google Scholar 

  85. Hou Y, Cramer SM (2011) Evaluation of selectivity in multimodal anion exchange systems: a priori prediction of protein retention and examination of mobile phase modifier effects. J Chromatogr A 1218(43):7813–7820. doi:10.1016/j.chroma.2011.08.080

    Article  CAS  PubMed  Google Scholar 

  86. Hirano A, Arakawa T, Kameda T (2014) Interaction of arginine with Capto MMC in multimodal chromatography. J Chromatogr A 1338:58–66. doi:10.1016/j.chroma.2014.02.053

    Article  CAS  PubMed  Google Scholar 

  87. Hirano A, Maruyama T, Shiraki K, Arakawa T, Kameda T (2014) Mechanism of protein desorption from 4-mercaptoethylpyridine resins by arginine solutions. J Chromatogr A 1373:141–148. doi:10.1016/j.chroma.2014.11.032

    Article  CAS  PubMed  Google Scholar 

  88. Holstein MA, Parimal S, McCallum SA, Cramer SM (2012) Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnol Bioeng 109(1):176–186. doi:10.1002/bit.23318

    Article  CAS  PubMed  Google Scholar 

  89. Herzer S, Bhangale A, Barker G, Chowdhary I, Conover M, O’Mara BW, et al. (2015) Development and scale-up of the recovery and purification of a domain antibody Fc fusion protein-comparison of a two and three-step approach. Biotechnol Bioeng 112(7):1417–1428. doi:10.1002/bit.25561

    Article  CAS  PubMed  Google Scholar 

  90. Liu Z, Gurgel PV, Carbonell RG (2012) Purification of human immunoglobulins A, G and M from Cohn fraction II/III by small peptide affinity chromatography. J Chromatogr A 1262:169–179. doi:10.1016/j.chroma.2012.09.026

    Article  CAS  PubMed  Google Scholar 

  91. Ishihara T, Hosono M (2015) Improving impurities clearance by amino acids addition to buffer solutions for chromatographic purifications of monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 995-996:107–114. doi:10.1016/j.jchromb.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  92. Bolton GR, Boesch AW, Basha J, Lacasse DP, Kelley BD, Acharya H (2011) Effect of protein and solution properties on the Donnan effect during the ultrafiltration of proteins. Biotechnol Prog 27(1):140–152. doi:10.1002/btpr.523

    Article  CAS  PubMed  Google Scholar 

  93. Miao F, Velayudhan A, DiBella E, Shervin J, Felo M, Teeters M, Alred P (2009) Theoretical analysis of excipient concentrations during the final ultrafiltration/diafiltration step of therapeutic antibody. Biotechnol Prog 25(4):964–972. doi:10.1002/btpr.168

    Article  CAS  PubMed  Google Scholar 

  94. Stoner MR, Fischer N, Nixon L, Buckel S, Benke M, Austin F, et al. (2004) Protein-solute interactions affect the outcome of ultrafiltration/diafiltration operations. J Pharm Sci 93(9):2332–2342. doi:10.1002/jps.20145

    Article  CAS  PubMed  Google Scholar 

  95. Shukla D, Zamolo L, Cavallotti C, Trout BL (2011) Understanding the role of arginine as an eluent in affinity chromatography via molecular computations. J Phys Chem B 115(11):2645–2654. doi:10.1021/jp111156z

    Article  CAS  PubMed  Google Scholar 

  96. Bolton GR, Selvitelli KR, Iliescu I, Cecchini DJ (2015) Inactivation of viruses using novel protein A wash buffers. Biotechnol Prog 31(2):406–413. doi:10.1002/btpr.2024

    Article  CAS  PubMed  Google Scholar 

  97. Chollangi S, Parker R, Singh N, Li Y, Borys M, Li Z (2015) Development of robust antibody purification by optimizing protein-A chromatography in combination with precipitation methodologies. Biotechnol Bioeng 112(11):2292–2304. doi:10.1002/bit.25639

    Article  CAS  PubMed  Google Scholar 

  98. Frauenschuh A, Bill K (2011) Wash solution and method for affinity chromatography, US20,120,283,416 A1

    Google Scholar 

  99. Gillespie R, Vunnum S, Nguyen T, Macneil S (2012) Protein purification, US20,120,149,878 A1

    Google Scholar 

  100. Srajer Gajdosik M, Clifton J, Josic D (2012) Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures. J Chromatogr A 1239:1–9. doi:10.1016/j.chroma.2012.03.046

    Article  CAS  PubMed  Google Scholar 

  101. Huang B, Liu FF, Dong XY, Sun Y (2011) Molecular mechanism of the affinity interactions between protein A and human immunoglobulin G1 revealed by molecular simulations. J Phys Chem B 115(14):4168–4176. doi:10.1021/jp111216g

    Article  CAS  PubMed  Google Scholar 

  102. Schuler G, Reinacher M (1991) Development and optimization of a single-step procedure using protein A affinity chromatography to isolate murine IgG1 monoclonal antibodies from hybridoma supernatants. J Chromatogr 587(1):61–70

    CAS  PubMed  Google Scholar 

  103. Lund LN, Christensen T, Toone E, Houen G, Staby A, St Hilaire PM (2011) Exploring variation in binding of protein A and protein G to immunoglobulin type G by isothermal titration calorimetry. J Mol Recognit 24(6):945–952. doi:10.1002/jmr.1140

    Article  CAS  PubMed  Google Scholar 

  104. Baumgartner K, Oelmeier SA, Hubbuch J (2015) The influence of mixed salts on the capacity of hic adsorbers: a predictive correlation to the surface tension and the aggregation temperature. Biotechnol Prog. doi:10.1002/btpr.2166

  105. Werner A, Hasse H (2013) Experimental study and modeling of the influence of mixed electrolytes on adsorption of macromolecules on a hydrophobic resin. J Chromatogr A 1315:135–144. doi:10.1016/j.chroma.2013.09.071

    Article  CAS  PubMed  Google Scholar 

  106. Wolfe LS, Barringer CP, Mostafa SS, Shukla AA (2014) Multimodal chromatography: characterization of protein binding and selectivity enhancement through mobile phase modulators. J Chromatogr A 1340:151–156. doi:10.1016/j.chroma.2014.02.086

    Article  CAS  PubMed  Google Scholar 

  107. Sipple et al., in preparation

    Google Scholar 

  108. Duhamel RC, Schur PH, Brendel K, Meezan E (1979) pH gradient elution of human IgG1, IgG2 and IgG4 from protein A-sepharose. J Immunol Methods 31(3-4):211–217

    CAS  PubMed  Google Scholar 

  109. Gaza-Bulseco G, Hickman K, Sinicropi-Yao S, Hurkmans K, Chumsae C, Liu H (2009) Effect of the conserved oligosaccharides of recombinant monoclonal antibodies on the separation by protein A and protein G chromatography. J Chromatogr A 1216(12):2382–2387. doi:10.1016/j.chroma.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  110. Ejima D, Yumioka R, Tsumoto K, Arakawa T (2005) Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography. Anal Biochem 345(2):250–257. doi:10.1016/j.ab.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  111. Roben PW, Salem AN, Silverman GJ (1995) VH3 family antibodies bind domain D of staphylococcal protein A. J Immunol 154(12):6437–6445

    CAS  PubMed  Google Scholar 

  112. Hogwood CE, Ahmad SS, Tarrant RD, Bracewell DG, Smales CM (2015) An ultra scale-down approach identifies host cell protein differences across a panel of mAb producing CHO cell line variants. Biotechnol J. doi:10.1002/biot.201500010

  113. Levy NE, Valente KN, Choe LH, Lee KH, Lenhoff AM (2014) Identification and characterization of host cell protein product-associated impurities in monoclonal antibody bioprocessing. Biotechnol Bioeng 111(5):904–912. doi:10.1002/bit.25158

    Article  CAS  PubMed  Google Scholar 

  114. Levy NE, Valente KN, Lee KH, Lenhoff AM (2015) Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Biotechnol Bioeng. doi:10.1002/bit.25882

  115. Lewus RA, Levy NE, Lenhoff AM, Sandler SI (2015) A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions. Biotechnol Prog 31(1):268–276. doi:10.1002/btpr.2011

    Article  CAS  PubMed  Google Scholar 

  116. Tarrant RD, Velez-Suberbie ML, Tait AS, Smales CM, Bracewell DG (2012) Host cell protein adsorption characteristics during protein A chromatography. Biotechnol Prog 28(4):1037–1044. doi:10.1002/btpr.1581

    Article  CAS  PubMed  Google Scholar 

  117. Zhang S, Daniels W, Salm J, Glynn J, Martin J, Gallo C, et al. (2016) Nature of foulants and fouling mechanism in the protein A MabSelect resin cycled in a monoclonal antibody purification process. Biotechnol Bioeng 113(1):141–149. doi:10.1002/bit.25706

    Article  CAS  PubMed  Google Scholar 

  118. Liu Z, Mostafa SS, Shukla AA (2015) A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification. Biotechnol Appl Biochem 62(1):37–47. doi:10.1002/bab.1243

    Article  CAS  PubMed  Google Scholar 

  119. Swinnen K, Krul A, Van Goidsenhoven I, Van Tichelt N, Roosen A, Van Houdt K (2007) Performance comparison of protein A affinity resins for the purification of monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 848(1):97–107. doi:10.1016/j.jchromb.2006.04.050

    Article  CAS  PubMed  Google Scholar 

  120. McCaw TR, Koepf EK, Conley L (2014) Evaluation of a novel methacrylate-based protein A resin for the purification of immunoglobulins and Fc-fusion proteins. Biotechnol Prog 30(5):1125–1136. doi:10.1002/btpr.1951

    Article  CAS  PubMed  Google Scholar 

  121. Meininger DP, Rance M, Starovasnik MA, Fairbrother WJ, Skelton NJ (2000) Characterization of the binding interface between the E-domain of Staphylococcal protein A and an antibody Fv-fragment. Biochemistry 39(1):26–36

    CAS  PubMed  Google Scholar 

  122. Moks T, Abrahmsen L, Nilsson B, Hellman U, Sjoquist J, Uhlen M (1986) Staphylococcal protein A consists of five IgG-binding domains. Eur J Biochem 156(3):637–643

    CAS  PubMed  Google Scholar 

  123. Ghose S, Hubbard B, Cramer SM (2007) Binding capacity differences for antibodies and Fc-fusion proteins on protein A chromatographic materials. Biotechnol Bioeng 96(4):768–779. doi:10.1002/bit.21044

    Article  CAS  PubMed  Google Scholar 

  124. Sjoquist J, Wadso II (1971) A thermochemical study of the reaction between protein A from S. aureus and fragment Fc from immunoglobulin G. FEBS Lett 14(4):254–256

    CAS  PubMed  Google Scholar 

  125. Yang L, Biswas ME, Chen P (2003) Study of binding between protein A and immunoglobulin G using a surface tension probe. Biophys J 84(1):509–522. doi:10.1016/s0006-3495(03)74870-x

    Article  CAS  PubMed  Google Scholar 

  126. Muller E, Vajda J (2016) Routes to improve binding capacities of affinity resins demonstrated for protein A chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. doi:10.1016/j.jchromb.2016.01.036

  127. LIfesciences G Application note (AA ed., Vol. 29190587). GE Lifesciences, Piscataway

    Google Scholar 

  128. Ghose S, Zhang J, Conley L, Caple R, Williams KP, Cecchini D (2014) Maximizing binding capacity for protein A chromatography. Biotechnol Prog 30(6):1335–1340. doi:10.1002/btpr.1980

    Article  CAS  PubMed  Google Scholar 

  129. Gonzalez-Valdez J, Yoshikawa A, Weinberg J, Benavides J, Rito-Palomares M, Przybycien TM (2014) Toward improving selectivity in affinity chromatography with PEGylated affinity ligands: the performance of PEGylated protein A. Biotechnol Prog 30(6):1364–1379. doi:10.1002/btpr.1994

    Article  CAS  PubMed  Google Scholar 

  130. Gulich S, Uhlen M, Hober S (2000) Protein engineering of an IgG-binding domain allows milder elution conditions during affinity chromatography. J Biotechnol 76(2-3):233–244

    CAS  PubMed  Google Scholar 

  131. Pabst TM, Palmgren R, Forss A, Vasic J, Fonseca M, Thompson C, et al. (2014) Engineering of novel Staphylococcal protein A ligands to enable milder elution pH and high dynamic binding capacity. J Chromatogr A 1362:180–185. doi:10.1016/j.chroma.2014.08.046

    Article  CAS  PubMed  Google Scholar 

  132. Watanabe H, Matsumaru H, Ooishi A, Honda S (2013) Structure-based histidine substitution for optimizing pH-sensitive Staphylococcus protein A. J Chromatogr B Analyt Technol Biomed Life Sci 929:155–160. doi:10.1016/j.jchromb.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  133. Xia HF, Liang ZD, Wang SL, Wu PQ, Jin XH (2014) Molecular modification of protein A to improve the elution pH and alkali resistance in affinity chromatography. Appl Biochem Biotechnol 172(8):4002–4012. doi:10.1007/s12010-014-0818-1

    Article  CAS  PubMed  Google Scholar 

  134. Gagnon P, Nian R (2016) Conformational plasticity of IgG during protein A affinity chromatography. J Chromatogr A 1433:98–105. doi:10.1016/j.chroma.2016.01.022

    Article  CAS  PubMed  Google Scholar 

  135. Gagnon P, Nian R, Leong D, Hoi A (2015) Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography. J Chromatogr A 1395:136–142. doi:10.1016/j.chroma.2015.03.080

    Article  CAS  PubMed  Google Scholar 

  136. Mazzer AR, Perraud X, Halley J, O’Hara J, Bracewell DG (2015) Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. J Chromatogr A 1415:83–90. doi:10.1016/j.chroma.2015.08.068

    Article  CAS  PubMed  Google Scholar 

  137. Shukla AA, Gupta P, Han X (2007) Protein aggregation kinetics during protein A chromatography. Case study for an Fc fusion protein. J Chromatogr A 1171(1-2):22–28. doi:10.1016/j.chroma.2007.09.040

    Article  CAS  PubMed  Google Scholar 

  138. Zhang S, Xu K, Daniels W, Salm J, Glynn J, Martin J, et al. (2016) Structural and functional characteristics of virgin and fouled Protein A MabSelect resin cycled in a monoclonal antibody purification process. Biotechnol Bioeng 113(2):367–375. doi:10.1002/bit.25708

    Article  CAS  PubMed  Google Scholar 

  139. Boulet-Audet M, Byrne B, Kazarian SG (2015) Cleaning-in-place of immunoaffinity resins monitored by in situ ATR-FTIR spectroscopy. Anal Bioanal Chem 407(23):7111–7122. doi:10.1007/s00216-015-8871-3

    Article  CAS  PubMed  Google Scholar 

  140. Rogers M, Hiraoka-Sutow M, Mak P, Mann F, Lebreton B (2009) Development of a rapid sanitization solution for silica-based protein A affinity adsorbents. J Chromatogr A 1216(21):4589–4596. doi:10.1016/j.chroma.2009.03.065

    Article  CAS  PubMed  Google Scholar 

  141. Wang L, Dembecki J, Jaffe NE, O’Mara BW, Cai H, Sparks CN, et al. (2013) A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification. J Chromatogr A 1308:86–95. doi:10.1016/j.chroma.2013.07.096

    Article  CAS  PubMed  Google Scholar 

  142. Gronberg A, Eriksson M, Ersoy M, Johansson HJ (2011) A tool for increasing the lifetime of chromatography resins. MAbs 3(2):192–202

    PubMed  Google Scholar 

  143. Yang L, Harding JD, Ivanov AV, Ramasubramanyan N, Dong DD (2015) Effect of cleaning agents and additives on protein A ligand degradation and chromatography performance. J Chromatogr A 1385:63–68. doi:10.1016/j.chroma.2015.01.068

    Article  CAS  PubMed  Google Scholar 

  144. Saraswat M, Musante L, Ravida A, Shortt B, Byrne B, Holthofer H (2013) Preparative purification of recombinant proteins: current status and future trends. Biomed Res Int 2013:312709. doi:10.1155/2013/312709

    Article  CAS  PubMed  Google Scholar 

  145. Stonier A, Simaria AS, Smith M, Farid SS (2012) Decisional tool to assess current and future process robustness in an antibody purification facility. Biotechnol Prog 28(4):1019–1028. doi:10.1002/btpr.1569

    Article  CAS  PubMed  Google Scholar 

  146. Liu HF, McCooey B, Duarte T, Myers DE, Hudson T, Amanullah A, et al. (2011) Exploration of overloaded cation exchange chromatography for monoclonal antibody purification. J Chromatogr A 1218(39):6943–6952. doi:10.1016/j.chroma.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  147. Iskra T, Sacramo A, Gallo C, Godavarti R, Chen S, Lute S, Brorson K (2015) Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode. Biotechnol Prog 31(3):750–757. doi:10.1002/btpr.2080

    Article  CAS  PubMed  Google Scholar 

  148. Kelley BD, Jakubik J, Vicik S (2008) Viral clearance studies on new and used chromatography resins: critical review of a large dataset. Biologicals 36(2):88–98. doi:10.1016/j.biologicals.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  149. Miesegaes GR, Lute SC, Read EK, Brorson KA (2014) Viral clearance by flow-through mode ion exchange columns and membrane adsorbers. Biotechnol Prog 30(1):124–131. doi:10.1002/btpr.1832

    Article  CAS  PubMed  Google Scholar 

  150. Norling L, Lute S, Emery R, Khuu W, Voisard M, Xu Y, et al. (2005) Impact of multiple re-use of anion-exchange chromatography media on virus removal. J Chromatogr A 1069(1):79–89

    CAS  PubMed  Google Scholar 

  151. Roush D (2014) Viral clearance using traditional, well-understood unit operations (session I): anion exchange chromatography (AEX). PDA J Pharm Sci Technol 68(1):23–29. doi:10.5731/pdajpst.2014.00963

    Article  CAS  PubMed  Google Scholar 

  152. Roush D (2015) Viral clearance using traditional, well-understood unit operations: session 1.2. Anion exchange chromatography; and session 1.3. Protein a chromatography. PDA J Pharm Sci Technol 69(1):154–162. doi:10.5731/pdajpst.2015.01039

    Article  CAS  PubMed  Google Scholar 

  153. Strauss DM, Cano T, Cai N, Delucchi H, Plancarte M, Coleman D, et al. (2010) Strategies for developing design spaces for viral clearance by anion exchange chromatography during monoclonal antibody production. Biotechnol Prog 26(3):750–755. doi:10.1002/btpr.385

    Article  CAS  PubMed  Google Scholar 

  154. Strauss DM, Gorrell J, Plancarte M, Blank GS, Chen Q, Yang B (2009) Anion exchange chromatography provides a robust, predictable process to ensure viral safety of biotechnology products. Biotechnol Bioeng 102(1):168–175. doi:10.1002/bit.22051

    Article  CAS  PubMed  Google Scholar 

  155. Zhou JX, Solamo F, Hong T, Shearer M, Tressel T (2008) Viral clearance using disposable systems in monoclonal antibody commercial downstream processing. Biotechnol Bioeng 100(3):488–496. doi:10.1002/bit.21781

    Article  CAS  PubMed  Google Scholar 

  156. Yao Y, Lenhoff AM (2006) Pore size distributions of ion exchangers and relation to protein binding capacity. J Chromatogr A 1126(1-2):107–119. doi:10.1016/j.chroma.2006.06.057

    Article  CAS  PubMed  Google Scholar 

  157. DePhillips P, Lenhoff AM (2000) Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. J Chromatogr A 883(1-2):39–54

    CAS  PubMed  Google Scholar 

  158. Tao Y, Carta G (2008) Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography. J Chromatogr A 1211(1-2):70–79. doi:10.1016/j.chroma.2008.09.096

    Article  CAS  PubMed  Google Scholar 

  159. Bowes BD, Lenhoff AM (2011) Protein adsorption and transport in dextran-modified ion-exchange media. II Intraparticle uptake and column breakthrough. J Chromatogr A 1218(29):4698–4708. doi:10.1016/j.chroma.2011.05.054

    Article  CAS  PubMed  Google Scholar 

  160. Lenhoff AM (2011) Protein adsorption and transport in polymer-functionalized ion-exchangers. J Chromatogr A 1218(49):8748–8759. doi:10.1016/j.chroma.2011.06.061

    Article  CAS  PubMed  Google Scholar 

  161. Perez Almodovar EX, Glatz B, Carta G (2012) Counterion effects on protein adsorption equilibrium and kinetics in polymer-grafted cation exchangers. J Chromatogr A 1253:83–93. doi:10.1016/j.chroma.2012.06.100

    Article  CAS  PubMed  Google Scholar 

  162. Perez-Almodovar EX, Wu Y, Carta G (2012) Multicomponent adsorption of monoclonal antibodies on macroporous and polymer grafted cation exchangers. J Chromatogr A 1264:48–56. doi:10.1016/j.chroma.2012.09.064

    Article  CAS  PubMed  Google Scholar 

  163. Xu Z, Li J, Zhou JX (2012) Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design. Prep Biochem Biotechnol 42(2):183–202. doi:10.1080/10826068.2012.654572

    Article  CAS  PubMed  Google Scholar 

  164. Riordan WT, Heilmann SM, Brorson K, Seshadri K, Etzel MR (2009) Salt tolerant membrane adsorbers for robust impurity clearance. Biotechnol Prog 25(6):1695–1702. doi:10.1002/btpr.256

    Article  CAS  PubMed  Google Scholar 

  165. Yoshimoto N, Itoh D, Isakari Y, Podgornik A, Yamamoto S (2015) Salt tolerant chromatography provides salt tolerance and a better selectivity for protein monomer separations. Biotechnol J 10(12):1929–1934. doi:10.1002/biot.201400550

    Article  CAS  PubMed  Google Scholar 

  166. Gu F, Chodavarapu K, McCreary D, Plitt TA, Tamoria E, Ni M, et al. (2015) Silica-based strong anion exchange media for protein purification. J Chromatogr A 1376:53–63. doi:10.1016/j.chroma.2014.11.082

    Article  CAS  PubMed  Google Scholar 

  167. Fang F, Aguilar MI, Hearn MT (1996) Influence of temperature on the retention behaviour of proteins in cation-exchange chromatography. J Chromatogr A 729(1-2):49–66

    CAS  PubMed  Google Scholar 

  168. Guo J, Carta G (2014) Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part II. Protein structure effects by hydrogen deuterium exchange mass spectrometry. J Chromatogr A 1356:129–137. doi:10.1016/j.chroma.2014.06.038

    Article  CAS  PubMed  Google Scholar 

  169. Guo J, Carta G (2015) Unfolding and aggregation of monoclonal antibodies on cation exchange columns: effects of resin type, load buffer, and protein stability. J Chromatogr A 1388:184–194. doi:10.1016/j.chroma.2015.02.047

    Article  CAS  PubMed  Google Scholar 

  170. Gospodarek AM, Hiser DE, O’Connell JP, Fernandez EJ (2014) Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces. J Chromatogr A 1355:238–252. doi:10.1016/j.chroma.2014.06.024

    Article  CAS  PubMed  Google Scholar 

  171. Bracewell DG, Boychyn M, Baldascini H, Storey SA, Bulmer M, More J, Hoare M (2008) Impact of clarification strategy on chromatographic separations: pre-processing of cell homogenates. Biotechnol Bioeng 100(5):941–949. doi:10.1002/bit.21823

    Article  CAS  PubMed  Google Scholar 

  172. Kramarczyk JF, Kelley BD, Coffman JL (2008) High-throughput screening of chromatographic separations: II. Hydrophobic interaction. Biotechnol Bioeng 100(4):707–720. doi:10.1002/bit.21907

    Article  CAS  PubMed  Google Scholar 

  173. McCue JT (2009) Theory and use of hydrophobic interaction chromatography in protein purification applications. Methods Enzymol 463:405–414. doi:10.1016/s0076-6879(09)63025-1

    Article  CAS  PubMed  Google Scholar 

  174. McCue JT, Engel P, Ng A, Macniven R, Thommes J (2008) Modeling of protein monomer/aggregate purification and separation using hydrophobic interaction chromatography. Bioprocess Biosyst Eng 31(3):261–275. doi:10.1007/s00449-008-0200-1

    Article  CAS  PubMed  Google Scholar 

  175. Deitcher RW, O’Connell JP, Fernandez EJ (2010) Changes in solvent exposure reveal the kinetics and equilibria of adsorbed protein unfolding in hydrophobic interaction chromatography. J Chromatogr A 1217(35):5571–5583. doi:10.1016/j.chroma.2010.06.051

    Article  CAS  PubMed  Google Scholar 

  176. Deitcher RW, Xiao Y, O’Connell JP, Fernandez EJ (2009) Protein instability during HIC: evidence of unfolding reversibility, and apparent adsorption strength of disulfide bond-reduced alpha-lactalbumin variants. Biotechnol Bioeng 102(5):1416–1427. doi:10.1002/bit.22171

    Article  CAS  PubMed  Google Scholar 

  177. Gospodarek AM, Smatlak ME, O’Connell JP, Fernandez EJ (2011) Protein stability and structure in HIC: hydrogen exchange experiments and COREX calculations. Langmuir 27(1):286–295. doi:10.1021/la103793r

    Article  CAS  PubMed  Google Scholar 

  178. Muca R, Marek W, Piatkowski W, Antos D (2010) Influence of the sample-solvent on protein retention, mass transfer and unfolding kinetics in hydrophobic interaction chromatography. J Chromatogr A 1217(17):2812–2820. doi:10.1016/j.chroma.2010.02.043

    Article  CAS  PubMed  Google Scholar 

  179. Ueberbacher R, Rodler A, Hahn R, Jungbauer A (2010) Hydrophobic interaction chromatography of proteins: thermodynamic analysis of conformational changes. J Chromatogr A 1217(2):184–190. doi:10.1016/j.chroma.2009.05.033

    Article  CAS  PubMed  Google Scholar 

  180. Eriksson KO, Belew M (2011) Hydrophobic interaction chromatography. Methods Biochem Anal 54:165–181

    CAS  PubMed  Google Scholar 

  181. To BC, Lenhoff AM (2007) Hydrophobic interaction chromatography of proteins. I The effects of protein and adsorbent properties on retention and recovery. J Chromatogr A 1141(2):191–205. doi:10.1016/j.chroma.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  182. To BC, Lenhoff AM (2007) Hydrophobic interaction chromatography of proteins. II Solution thermodynamic properties as a determinant of retention. J Chromatogr A 1141(2):235–243. doi:10.1016/j.chroma.2006.12.022

    Article  CAS  PubMed  Google Scholar 

  183. To BC, Lenhoff AM (2008) Hydrophobic interaction chromatography of proteins III. Transport and kinetic parameters in isocratic elution. J Chromatogr A 1205(1-2):46–59. doi:10.1016/j.chroma.2008.07.079

    Article  CAS  PubMed  Google Scholar 

  184. To BC, Lenhoff AM (2011) Hydrophobic interaction chromatography of proteins. IV Protein adsorption capacity and transport in preparative mode. J Chromatogr A 1218(3):427–440. doi:10.1016/j.chroma.2010.11.051

    Article  CAS  PubMed  Google Scholar 

  185. Mirani MR, Rahimpour F (2015) Thermodynamic modelling of hydrophobic interaction chromatography of biomolecules in the presence of salt. J Chromatogr A 1422:170–177. doi:10.1016/j.chroma.2015.10.019

    Article  CAS  PubMed  Google Scholar 

  186. Nfor BK, Zuluaga DS, Verheijen PJ, Verhaert PD, van der Wielen LA, Ottens M (2011) Model-based rational strategy for chromatographic resin selection. Biotechnol Prog 27(6):1629–1643

    CAS  PubMed  Google Scholar 

  187. Lemmens R, Olsson U, Nyhammar T, Stadler J (2003) Supercoiled plasmid DNA: selective purification by thiophilic/aromatic adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 784(2):291–300

    CAS  PubMed  Google Scholar 

  188. Senczuk AM, Klinke R, Arakawa T, Vedantham G, Yigzaw Y (2009) Hydrophobic interaction chromatography in dual salt system increases protein binding capacity. Biotechnol Bioeng 103(5):930–935. doi:10.1002/bit.22313

    Article  CAS  PubMed  Google Scholar 

  189. Melander W, Horvath C (1977) Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183(1):200–215

    CAS  PubMed  Google Scholar 

  190. Kelley et al (2008) Weak partitioning chromatography for anion exchange purification of monoclonal antibodies. Biotechnol Bioeng 101:553–566

    Google Scholar 

  191. Johansson B-L, Belew M, Eriksson S, Glad G, Lind O, Maloisel J-L, Norrman N (2003) Preparation and characterization of prototypes for multi-modal separation aimed for capture of positively charged biomolecules at high-salt conditions. J Chromatogr A 1016(1):35–49. doi:10.1016/S0021-9673(03)01141-5

    Article  CAS  PubMed  Google Scholar 

  192. Yang T, Malmquist G, Johansson B-L, Maloisel J-L, Cramer S (2007) Evaluation of multi-modal high salt binding ion exchange materials. J Chromatogr A 1157(1–2):171–177. doi:10.1016/j.chroma.2007.04.070

    Article  CAS  PubMed  Google Scholar 

  193. Chen J, Tetrault J, Zhang Y, Wasserman A, Conley G, Dileo M, et al. (2010) The distinctive separation attributes of mixed-mode resins and their application in monoclonal antibody downstream purification process. J Chromatogr A 1217(2):216–224. doi:10.1016/j.chroma.2009.09.047

    Article  CAS  PubMed  Google Scholar 

  194. Kaleas KA, Tripodi M, Revelli S, Sharma V, Pizarro SA (2014) Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. J Chromatogr B Analyt Technol Biomed Life Sci 969:256–263. doi:10.1016/j.jchromb.2014.08.026

    Article  CAS  PubMed  Google Scholar 

  195. Pezzini J, Joucla G, Gantier R, Toueille M, Lomenech A-M, Le Sénéchal C, et al. (2011) Antibody capture by mixed-mode chromatography: a comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. J Chromatogr A 1218(45):8197–8208. doi:10.1016/j.chroma.2011.09.036

    Article  CAS  PubMed  Google Scholar 

  196. Pete G (2009) IgG aggregate removal by charged-hydrophobic mixed mode chromatography. Curr Pharm Biotechnol 10(4):434–439. doi:10.2174/138920109788488888

    Article  Google Scholar 

  197. Li P, Xiu G, Mata VG, Grande CA, Rodrigues AE (2006) Expanded bed adsorption/desorption of proteins with Streamline Direct CST I adsorbent. Biotechnol Bioeng 94(6):1155–1163. doi:10.1002/bit.20952

    Article  CAS  PubMed  Google Scholar 

  198. Mollerup JM, Hansen TB, Kidal S, Staby A (2008) Quality by design—thermodynamic modelling of chromatographic separation of proteins. J Chromatogr A 1177(2):200–206. doi:10.1016/j.chroma.2007.08.059

    Article  CAS  PubMed  Google Scholar 

  199. Nfor BK, Noverraz M, Chilamkurthi S, Verhaert PDEM, van der Wielen LAM, Ottens M (2010) High-throughput isotherm determination and thermodynamic modeling of protein adsorption on mixed mode adsorbents. J Chromatogr A 1217(44):6829–6850. doi:10.1016/j.chroma.2010.07.069

    Article  CAS  PubMed  Google Scholar 

  200. Pitiot O, Folley L, Vijayalakshmi MA (2001) Protein adsorption on histidyl-aminohexyl-sepharose 4B: I. Study of the mechanistic aspects of adsorption for the separation of human serum albumin from its non-enzymatic glycated isoforms (advanced glycosylated end products). J Chromatogr B Biomed Sci Appl 758(2):163–172. doi:10.1016/S0378-4347(01)00176-1

    Article  CAS  PubMed  Google Scholar 

  201. Wang J, Jenkins EW, Robinson JR, Wilson A, Husson SM (2015) A new multimodal membrane adsorber for monoclonal antibody purifications. J Membr Sci 492:137–146. doi:10.1016/j.memsci.2015.05.013

    Article  CAS  Google Scholar 

  202. Follman DK, Fahrner RL (2004) Factorial screening of antibody purification processes using three chromatography steps without protein A. J Chromatogr A 1024(1-2):79–85

    CAS  PubMed  Google Scholar 

  203. Komkova EN, Honeyman CH (2014) Mixed-mode chromatography membranes, US20,sss140,238,935 A1

    Google Scholar 

  204. Wang J, Sproul RT, Anderson LS, Husson SM (2014) Development of multimodal membrane adsorbers for antibody purification using atom transfer radical polymerization. Polymer 55(6):1404–1411. doi:10.1016/j.polymer.2013.12.023

    Article  CAS  Google Scholar 

  205. Stone MT, Kozlov M (2014) Separating proteins with activated carbon. Langmuir 30(27):8046–8055. doi:10.1021/la501005s

    Article  CAS  PubMed  Google Scholar 

  206. Amara J, Boyle J, Yavorsky D, Cacace B (2016) High surface area fiber media with nano-fibrillated surface features, WO2,016,036,508 A1

    Google Scholar 

  207. Amara J, Cacace B, Yavorsky D, Boyle J (2014) Chromatography media for purifying vaccines and viruses, US20,150,352,465 A1

    Google Scholar 

  208. Yavorsky D, Amara J, Umana J, Cataldo W, Kozlov M, Stone M (2015) Chromatography media and method, US20,120,029,176 A1

    Google Scholar 

  209. Hardick O, Dods S, Stevens B, Bracewell DG (2015) Nanofiber adsorbents for high productivity continuous downstream processing. J Biotechnol 213:74–82. doi:10.1016/j.jbiotec.2015.01.031

    Article  CAS  PubMed  Google Scholar 

  210. Baur D, Angarita M, Muller-Spath T, Steinebach F, Morbidelli M (2016) Comparison of batch and continuous multi-column protein A capture processes by optimal design. Biotechnol J. doi:10.1002/biot.201500481

  211. Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing, May 20–21, 2014, Continuous manufacturing symposium. J Pharm Sci 104(3):813–820. doi:10.1002/jps.24268

  212. Muller-Spath T, Aumann L, Strohlein G, Kornmann H, Valax P, Delegrange L, et al. (2010) Two step capture and purification of IgG2 using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 107(6):974–984. doi:10.1002/bit.22887

    Article  CAS  PubMed  Google Scholar 

  213. Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, et al. (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109(12):3018–3029. doi:10.1002/bit.24584

    Article  CAS  PubMed  Google Scholar 

  214. Anderson NG (2001) Practical use of continuous processing in developing and scaling up laboratory processes. Org Process Res Dev 5(6):613–621. doi:10.1021/op0100605

    Article  CAS  Google Scholar 

  215. Fletcher N (2010) Turn batch to continuous processing. Manufacturing Chemist Pharma

    Google Scholar 

  216. Laird T (2007) Continuous processes in small-scale manufacture. Org Process Res Dev 11(6):927–927. doi:10.1021/op700233e

    Article  CAS  Google Scholar 

  217. Laird T (2014) Process intensification: engineering for efficiency, sustainability and flexibility. Org Process Res Dev 18(1):276–276. doi:10.1021/op400341e

    Article  CAS  Google Scholar 

  218. Mazumdar S, Ray SK (2001) Solidification control in continuous casting of steel. Sadhana 26(1):179–198. doi:10.1007/bf02728485

    Article  CAS  Google Scholar 

  219. Reay DA, Ramshaw C, Harvey A (2013) Process intensification engineering for efficiency, sustainability and flexibility. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=486200

  220. Thomas H (2008) Coming of age. Chem Eng (805):38–40. Retrieved from https://www.scopus.com/inward/record.url?eid=2-s2.0-46949110144&partnerID=40&md5=127c830aa56e3a069687fa3af8cc731e

  221. Ruthven DM, Ching CB (1989) Counter-current and simulated counter-current adsorption separation processes. Chem Eng Sci 44(5):1011–1038. doi:10.1016/0009-2509(89)87002-2

    Article  CAS  Google Scholar 

  222. Godawat R, Brower K, Jain S, Konstantinov K, Riske F, Warikoo V (2012) Periodic counter-current chromatography -- design and operational considerations for integrated and continuous purification of proteins. Biotechnol J 7(12):1496–1508. doi:10.1002/biot.201200068

    Article  CAS  PubMed  Google Scholar 

  223. Gjoka X, Rogler K, Martino RA, Gantier R, Schofield M (2015) A straightforward methodology for designing continuous monoclonal antibody capture multi-column chromatography processes. J Chromatogr A 1416:38–46. doi:10.1016/j.chroma.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  224. Dutta AK, Tran T, Napadensky B, Teella A, Brookhart G, Ropp PA, et al. (2015) Purification of monoclonal antibodies from clarified cell culture fluid using protein A capture continuous countercurrent tangential chromatography. J Biotechnol 213:54–64. doi:10.1016/j.jbiotec.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  225. Napadensky B, Shinkazh O, Teella A, Zydney AL (2013) Continuous countercurrent tangential chromatography for monoclonal antibody purification. Sep Sci Technol 48(9):1289–1297. doi:10.1080/01496395.2013.767837

    Article  CAS  Google Scholar 

  226. Shinkazh O, Kanani D, Barth M, Long M, Hussain D, Zydney AL (2011) Countercurrent tangential chromatography for large-scale protein purification. Biotechnol Bioeng 108(3):582–591. doi:10.1002/bit.22960

    Article  CAS  PubMed  Google Scholar 

  227. Casey C, Gallos T, Alekseev Y, Ayturk E, Pearl S (2011) Protein concentration with single-pass tangential flow filtration (SPTFF). J Membr Sci 384(1–2):82–88. doi:10.1016/j.memsci.2011.09.004

    Article  CAS  Google Scholar 

  228. Dizon-Maspat J, Bourret J, D’Agostini A, Li F (2012) Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production. Biotechnol Bioeng 109(4):962–970. doi:10.1002/bit.24377

    Article  CAS  PubMed  Google Scholar 

  229. Chenette HCS, Robinson JR, Hobley E, Husson SM (2012) Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes. J Membr Sci 432-424:43–52. doi:10.1016/j.memsci.2012.07.040

    Article  CAS  Google Scholar 

  230. Kuczewski M, Schirmer E, Lain B, Zarbis-Papastoitsis G (2011) A single-use purification process for the production of a monoclonal antibody produced in a PER.C6 human cell line. Biotechnol J 6(1):56–65. doi:10.1002/biot.201000292

    Article  CAS  PubMed  Google Scholar 

  231. Orr V, Zhong L, Moo-Young M, Chou CP (2013) Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 31(4):450–465. doi:10.1016/j.biotechadv.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  232. Klutz S, Lobedann M, Bramsiepe C, Schembecker G (2016) Continuous viral inactivation at low pH value in antibody manufacturing. Chem Eng Process Process Intensification 102:88–101. doi:10.1016/j.cep.2016.01.002

    Article  CAS  Google Scholar 

  233. Klutz S, Magnus J, Lobedann M, Schwan P, Maiser B, Niklas J, et al. (2015) Developing the biofacility of the future based on continuous processing and single-use technology. J Biotechnol 213:120–130. doi:10.1016/j.jbiotec.2015.06.388

    Article  CAS  PubMed  Google Scholar 

  234. Pollock J, Bolton G, Coffman J, Ho SV, Bracewell DG, Farid SS (2013) Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture. J Chromatogr A 1284:17–27. doi:10.1016/j.chroma.2013.01.082

    Article  CAS  PubMed  Google Scholar 

  235. Dutta AK, Tan J, Napadensky B, Zydney AL, Shinkazh O (2016) Performance optimization of continuous countercurrent tangential chromatography for antibody capture. Biotechnol Prog 32(2):430–439. doi:10.1002/btpr.2250

    Article  CAS  PubMed  Google Scholar 

  236. Brower KP, Ryakala VK, Bird R, Godawat R, Riske FJ, Konstantinov K, et al. (2014) Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development. Biotechnol Prog 30(3):708–717. doi:10.1002/btpr.1870

    Article  CAS  PubMed  Google Scholar 

  237. Read EK, Park JT, Shah RB, Riley BS, Brorson KA, Rathore AS (2010) Process analytical technology (PAT) for biopharmaceutical products: Part I. Concepts and applications. Biotechnol Bioeng 105(2):276–284. doi:10.1002/bit.22528

    Article  CAS  PubMed  Google Scholar 

  238. Tharmalingam T, Wu CH, Callahan S, T Goudar C (2015) A framework for real-time glycosylation monitoring (RT-GM) in mammalian cell culture. Biotechnol Bioeng 112(6):1146–1154. doi:10.1002/bit.25520

    Article  CAS  PubMed  Google Scholar 

  239. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery. Wiley-Interscience

    Google Scholar 

  240. Montgomery DC (2012) Design and analysis of experiments. Wiley

    Google Scholar 

  241. Begley CG (2013) An unappreciated challenge to oncology drug discovery: pitfalls in preclinical research. Am Soc Clin Oncol Educ Book, 466–468. doi:10.1200/EdBook_AM.2013.33.466

  242. Cook DA, Beckman TJ, Bordage G (2007) Quality of reporting of experimental studies in medical education: a systematic review. Med Educ 41(8):737–745. doi:10.1111/j.1365-2923.2007.02777.x

    Article  PubMed  Google Scholar 

  243. Deming SN (1986) Chemometrics: an overview. Clin Chem 32(9):1702–1706

    CAS  PubMed  Google Scholar 

  244. Ilzarbe L, Álvarez MJ, Viles E, Tanco M (2008) Practical applications of design of experiments in the field of engineering: a bibliographical review. Qual Reliab Eng Int 24(4):417–428. doi:10.1002/qre.909

    Article  Google Scholar 

  245. Tanco M, Viles E, Ilzarbe L, Alvarez MJ (2007) Manufacturing industries need design of experiments (DoE). Proceedings of the World Congress on Engineering, II

    Google Scholar 

  246. Nfor BK, Ripic J, van der Padt A, Jacobs M, Ottens M (2012) Model-based high-throughput process development for chromatographic whey proteins separation. Biotechnol J 7(10):1221–1232. doi:10.1002/biot.201200191

    Article  CAS  PubMed  Google Scholar 

  247. Welsh J (2015) Pushing the limits of high-throughput chromatography process development: current state and future directions. Pharm Bioprocess 3(1):1–3

    Google Scholar 

  248. Hussain M (2015) A direct qPCR method for residual DNA quantification in monoclonal antibody drugs produced in CHO cells. J Pharm Biomed Anal 115:603–606. doi:10.1016/j.jpba.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  249. Nissom PM (2007) Specific detection of residual CHO host cell DNA by real-time PCR. Biologicals 35(3):211–215. doi:10.1016/j.biologicals.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  250. Diederich P, Hoffmann M, Hubbuch J (2015) High-throughput process development of purification alternatives for the protein avidin. Biotechnol Prog 31(4):957–973. doi:10.1002/btpr.2104

    Article  CAS  PubMed  Google Scholar 

  251. Van Cleave VH (2003) Validation of immunoassays for anti-drug antibodies. Dev Biol (Basel) 112:107–112

    PubMed  Google Scholar 

  252. Antony J (2003) 2 – Fundamentals of design of experiments. In: Design of experiments for engineers and scientists (pp. 6–16). Butterworth-Heinemann, Oxford

    Google Scholar 

  253. Tye H (2004) Application of statistical ‘design of experiments’ methods in drug discovery. Drug Discov Today 9(11):485–491. doi:10.1016/S1359-6446(04)03086-7

    Article  CAS  PubMed  Google Scholar 

  254. Donev AN (2004) Design of experiments in the presence of errors in factor levels. J Stat Plann Inference 126(2):569–585. doi:10.1016/j.jspi.2003.09.002

    Article  Google Scholar 

  255. Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 63(19):4846–4872. doi:10.1016/j.ces.2007.11.034

    Article  CAS  Google Scholar 

  256. Rathore AS, Mittal S, Pathak M, Arora A (2014) Guidance for performing multivariate data analysis of bioprocessing data: pitfalls and recommendations. Biotechnol Prog 30(4):967–973. doi:10.1002/btpr.1922

    Article  CAS  PubMed  Google Scholar 

  257. Shen X, Huang H-C (2006) Optimal model assessment, selection, and combination. J Am Stat Assoc 101(474):554–568. doi:10.1198/016214505000001078

    Article  CAS  Google Scholar 

  258. Shen X, Ye J (2002) Adaptive model selection. J Am Stat Assoc 97(457):210–221. doi:10.1198/016214502753479356

    Article  Google Scholar 

  259. Zhang B, Shen X, Mumford SL (2012) Generalized degrees of freedom and adaptive model selection in linear mixed-effects models. Comput Stat Data Anal 56(3):574–586. doi:10.1016/j.csda.2011.09.001

    Article  PubMed  Google Scholar 

  260. Cortina JM (1993) Interaction, nonlinearity, and multicollinearity: implications for multiple regression. J Manag 19(4):915–922. doi:10.1177/014920639301900411

    Article  Google Scholar 

  261. Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol Methods 14(4):323–348. doi:10.1037/a0016973

    Article  PubMed  Google Scholar 

  262. Luo L, Yao Y, Gao F (2015) Bayesian improved model migration methodology for fast process modeling by incorporating prior information. Chem Eng Sci 134:23–35. doi:10.1016/j.ces.2015.04.045

    Article  CAS  Google Scholar 

  263. Sainani KL (2013) Multivariate regression: the pitfalls of automated variable selection. PM R 5(9):791–794. doi:10.1016/j.pmrj.2013.07.007

    Article  PubMed  Google Scholar 

  264. Berry EM, Coustere-Yakir C, Grover NB (1998) The significance of non-significance. QJM 91(9):647–653

    CAS  PubMed  Google Scholar 

  265. Gerss J (2006) Not significant--what now? Zentralbl Gynakol 128(6):307–310. doi:10.1055/s-2006-942088

    Article  CAS  PubMed  Google Scholar 

  266. Yan W, Hu S, Yang Y, Gao F, Chen T (2011) Bayesian migration of Gaussian process regression for rapid process modeling and optimization. Chem Eng J 166(3):1095–1103. doi:10.1016/j.cej.2010.11.097

    Article  CAS  Google Scholar 

  267. Barker GA, Calzada J, Herzer S, Rieble S (2015) Adaptation to high throughput batch chromatography enhances multivariate screening. Biotechnol J 10(9):1493–1498. doi:10.1002/biot.201400671

    Article  CAS  PubMed  Google Scholar 

  268. Ryan TP (2006) Modern experimental design. Wiley-Interscience

    Google Scholar 

  269. Eriksson L (2008) Design of experiments: principles and applications. Umetrics

    Google Scholar 

  270. Harring JR, Weiss BA, Li M (2015) Assessing spurious interaction effects in structural equation modeling: a cautionary note. Educ Psychol Meas 75(5):721–738. doi:10.1177/0013164414565007

    Article  PubMed  Google Scholar 

  271. Bedeian AG, Mossholder KW (1994) Simple question, not so simple answer: interpreting interaction terms in moderated multiple regression. J Manag 20(1):159–165

    Google Scholar 

  272. Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments, 3rd edn. Wiley

    Google Scholar 

  273. Dougherty S, Simpson JR, Hill RR, Pignatiello JJ, White ED (2014) Augmentation of definitive screening designs (DSD+). Int J Exp Des Process Optimisation 4(2):91–115. doi:10.1504/IJEDPO.2014.066465

    Article  Google Scholar 

  274. Hecht ES, McCord JP, Muddiman DC (2015) Definitive screening design optimization of mass spectrometry parameters for sensitive comparison of filter and solid phase extraction purified, INLIGHT plasma N-glycans. Anal Chem 87(14):7305–7312. doi:10.1021/acs.analchem.5b01609

    Article  CAS  PubMed  Google Scholar 

  275. Tai M, Ly A, Leung I, Nayar G (2015) Efficient high-throughput biological process characterization: definitive screening design with the Ambr250 bioreactor system. Biotechnol Prog 31(5):1388–1395. doi:10.1002/btpr.2142

    Article  CAS  PubMed  Google Scholar 

  276. Yang Y-P, D’Amore T (2014) Protein subunit vaccine purification. In: Wen EP, Ellis R, Pujar NS (eds) Vaccine development and manufacturing1st edn. Wiley, Hoboken

    Google Scholar 

  277. Goos P (2002) The optimal design of blocked and split-plot experiments. Springer

    Google Scholar 

  278. Barker TB (2005) Quality by experimental design, 3rd edn. CRC Press

    Google Scholar 

  279. Fisher RA (1966) The design of experiments8th edn. Oliver and Boyd, Edinburgh

    Google Scholar 

  280. Lau CY, Zahidi AAA, Liew OW, Ng TW (2015) A direct heating model to overcome the edge effect in microplates. J Pharm Biomed Anal 102:199–202. doi:10.1016/j.jpba.2014.09.021

    Article  CAS  PubMed  Google Scholar 

  281. Close EJ, Salm JR, Bracewell DG, Sorensen E (2014) Modelling of industrial biopharmaceutical multicomponent chromatography. Chem Eng Res Des 92(7):1304–1314. doi:10.1016/j.cherd.2013.10.022

    Article  CAS  Google Scholar 

  282. Chhatre S, Bracewell DG, Titchener-Hooker NJ (2009) A microscale approach for predicting the performance of chromatography columns used to recover therapeutic polyclonal antibodies. J Chromatogr A 1216(45):7806–7815. doi:10.1016/j.chroma.2009.09.038

    Article  CAS  PubMed  Google Scholar 

  283. Hutchinson N, Chhatre S, Baldascini H, Davies JL, Bracewell DG, Hoare M (2009) Ultra scale-down approach to correct dispersive and retentive effects in small-scale columns when predicting larger scale elution profiles. Biotechnol Prog 25(4):1103–1110. doi:10.1002/btpr.172

    Article  CAS  PubMed  Google Scholar 

  284. Lacki KM (2012) High throughput process development of chromatography steps: advantages and limitations of different formats used. Biotechnol J 7(10):1192–1202

    CAS  PubMed  Google Scholar 

  285. Kelley BD, Switzer M, Bastek P, Kramarczyk JF, Molnar K, Yu T, Coffman J (2008) High-throughput screening of chromatographic separations: IV. Ion-exchange. Biotechnol Bioeng 100(5):950–963. doi:10.1002/bit.21905

    Article  CAS  PubMed  Google Scholar 

  286. Creasy A, Barker G, Yao Y, Carta G (2015) Systematic interpolation method predicts protein chromatographic elution from batch isotherm data without a detailed mechanistic isotherm model. Biotechnol J 10:1400–1411

    CAS  PubMed  Google Scholar 

  287. Coffman JL, Kramarczyk JF, Kelley BD (2008) High-throughput screening of chromatographic separations: I. Method development and column modeling. Biotechnol Bioeng 100(4):605–618. doi:10.1002/bit.21904

    Article  CAS  PubMed  Google Scholar 

  288. Boning DS, Mozumder PK (1994) DOE/Opt: a system for design of experiments, response surface modeling, and optimization using process and device simulation. IEEE Trans Semiconductor Manuf 7(2):233–244. doi:10.1109/66.286858

    Article  Google Scholar 

  289. Wu JCW, Hamada MS (2009) Experiments: planning, analysis, and optimization, 2nd edn. Wiley

    Google Scholar 

  290. Ladd Effio C, Baumann P, Weigel C, Vormittag P, Middelberg A, Hubbuch J (2016) High-throughput process development of an alternative platform for the production of virus-like particles in Escherichia coli. J Biotechnol 219:7–19. doi:10.1016/j.jbiotec.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  291. Staby A, Jensen RH, Bensch M, Hubbuch J, Dunweber DL, Krarup J, et al. (2007) Comparison of chromatographic ion-exchange resins VI. Weak anion-exchange resins. J Chromatogr A 1164(1-2):82–94. doi:10.1016/j.chroma.2007.06.048

    Article  CAS  PubMed  Google Scholar 

  292. Wensel DL, Kelley BD, Coffman JL (2008) High-throughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite. Biotechnol Bioeng 100(5):839–854. doi:10.1002/bit.21906

    Article  CAS  PubMed  Google Scholar 

  293. Traylor SJ, Xu X, Li Y, Jin M, Li ZJ (2014) Adaptation of the pore diffusion model to describe multi-addition batch uptake high-throughput screening experiments. J Chromatogr A 1368:100–106. doi:10.1016/j.chroma.2014.09.058

    Article  CAS  PubMed  Google Scholar 

  294. Carta G (2012) Predicting protein dynamic binding capacity from batch adsorption tests. Biotechnol J 7(10):1216–1220. doi:10.1002/biot.201200136

    Article  CAS  PubMed  Google Scholar 

  295. Luo H, Cao M, Newell K, Afdahl C, Wang J, Wang WK, Li Y (2015) Double-peak elution profile of a monoclonal antibody in cation exchange chromatography is caused by histidine-protonation-based charge variants. J Chromatogr A 1424:92–101. doi:10.1016/j.chroma.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  296. Ho SV, McLaughlin JM, Cue BW, Dunn PJ (2010) Environmental considerations in biologics manufacturing. Green Chem 12(5):755–766. doi:10.1039/B927443J

    Article  CAS  Google Scholar 

  297. Lopes AG (2015) Single-use in the biopharmaceutical industry: a review of current technology impact, challenges and limitations. Food Bioprod Process 93:98–114

    Google Scholar 

  298. Shukla AA, Gottschalk U (2013) Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 31(3):147–154. doi:10.1016/j.tibtech.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  299. Langer ES, Rader R (2015) Future proofing biopharmaceutical manufacturing: the industry seeks a leaner version of itself. Pharm Bioprocess 1(5):415–418

    Google Scholar 

  300. McNerney T, Thomas A, Senczuk A, Petty K, Zhao X, Piper R, et al. (2015) PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. MAbs 7(2):413–428. doi:10.1080/19420862.2015.1007824

    Article  CAS  PubMed  Google Scholar 

  301. Weaver J, Husson SM, Murphy L, Wickramasinghe SR (2013) Anion exchange membrane adsorbers for flow-through polishing steps: Part I. Clearance of minute virus of mice. Biotechnol Bioeng 110(2):491–499. doi:10.1002/bit.24720

    Article  CAS  PubMed  Google Scholar 

  302. Weaver J, Husson SM, Murphy L, Wickramasinghe SR (2013) Anion exchange membrane adsorbers for flow-through polishing steps: Part II. Virus, host cell protein, DNA clearance, and antibody recovery. Biotechnol Bioeng 110(2):500–510. doi:10.1002/bit.24724

    Article  CAS  PubMed  Google Scholar 

  303. Smrekar V, Smrekar F, Strancar A, Podgornik A (2013) Single step plasmid DNA purification using methacrylate monolith bearing combination of ion-exchange and hydrophobic groups. J Chromatogr A 1276:58–64. doi:10.1016/j.chroma.2012.12.029

    Article  CAS  PubMed  Google Scholar 

  304. Sousa A, Almeida AM, Cernigoj U, Sousa F, Queiroz JA (2014) Histamine monolith versatility to purify supercoiled plasmid deoxyribonucleic acid from Escherichia coli lysate. J Chromatogr A 1355:125–133. doi:10.1016/j.chroma.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  305. Teeters MA, Conrardy SE, Thomas BL, Root TW, Lightfoot EN (2003) Adsorptive membrane chromatography for purification of plasmid DNA. J Chromatogr A 989(1):165–173

    CAS  PubMed  Google Scholar 

  306. Ladd Effio C, Hahn T, Seiler J, Oelmeier SA, Asen I, Silberer C, et al. (2016) Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles. J Chromatogr A 1429:142–154. doi:10.1016/j.chroma.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  307. Nestola P, Peixoto C, Villain L, Alves PM, Carrondo MJ, Mota JP (2015) Rational development of two flowthrough purification strategies for adenovirus type 5 and retro virus-like particles. J Chromatogr A 1426:91–101. doi:10.1016/j.chroma.2015.11.037

    Article  CAS  PubMed  Google Scholar 

  308. Banjac M, Roethl E, Gelhart F, Kramberger P, Jarc BL, Jarc M, Peterka M (2014) Purification of Vero cell derived live replication deficient influenza A and B virus by ion exchange monolith chromatography. Vaccine 32(21):2487–2492. doi:10.1016/j.vaccine.2014.02.086

    Article  CAS  PubMed  Google Scholar 

  309. Mundle ST, Giel-Moloney M, Kleanthous H, Pugachev KV, Anderson SF (2015) Preparation of pure, high titer, pseudoinfectious Flavivirus particles by hollow fiber tangential flow filtration and anion exchange chromatography. Vaccine 33(35):4255–4260. doi:10.1016/j.vaccine.2014.09.074

    Article  CAS  PubMed  Google Scholar 

  310. Thömmes J, Kula MR (1995) Membrane chromatography—an integrative concept in the downstream processing of proteins. Biotechnol Prog 11(4):357–367. doi:10.1021/bp00034a001

    Article  Google Scholar 

  311. Francis P, von Lieres E, Haynes CA (2011) Zonal rate model for stacked membrane chromatography. I. Characterizing solute dispersion under flow-through conditions. J Chromatogr A 1218(31):5071–5078. doi:10.1016/j.chroma.2011.05.017

    Article  CAS  PubMed  Google Scholar 

  312. Zhou JX, Tressel T, Gottschalk U, Solamo F, Pastor A, Dermawan S, et al. (2006) New Q membrane scale-down model for process-scale antibody purification. J Chromatogr A 1134(1-2):66–73. doi:10.1016/j.chroma.2006.08.064

    Article  CAS  PubMed  Google Scholar 

  313. Ghosh P, Vahedipour K, Leuthold M, von Lieres E (2014) Model-based analysis and quantitative prediction of membrane chromatography: extreme scale-up from 0.08 ml to 1200 ml. J Chromatogr A 1332:8–13. doi:10.1016/j.chroma.2014.01.047

    Article  CAS  PubMed  Google Scholar 

  314. Tatarova I, Faber R, Denoyel R, Polakovic M (2009) Characterization of pore structure of a strong anion-exchange membrane adsorbent under different buffer and salt concentration conditions. J Chromatogr A 1216(6):941–947. doi:10.1016/j.chroma.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  315. Borsoi-Ribeiro M, Bresolin IT, Vijayalakshmi M, Bueno SM (2013) Behavior of human immunoglobulin G adsorption onto immobilized Cu(II) affinity hollow-fiber membranes. J Mol Recognit 26(10):514–520. doi:10.1002/jmr.2296

    Article  CAS  PubMed  Google Scholar 

  316. Yavuz H, Bereli N, Yilmaz F, Armutcu C, Denizli A (2015) Antibody purification from human plasma by metal-chelated affinity membranes. Methods Mol Biol 1286:43–46. doi:10.1007/978-1-4939-2447-9_4

    Article  CAS  PubMed  Google Scholar 

  317. Francis P, Haynes CA (2009) Scale-up of controlled-shear affinity filtration using computational fluid dynamics. Biotechnol J 4(5):665–673. doi:10.1002/biot.200800331

    Article  CAS  PubMed  Google Scholar 

  318. Francis P, Martinez DM, Taghipour F, Bowen BD, Haynes CA (2006) Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics. Biotechnol Bioeng 95(6):1207–1217. doi:10.1002/bit.21090

    Article  CAS  PubMed  Google Scholar 

  319. Hou Y, Brower M, Pollard D, Kanani D, Jacquemart R, Kachuik B, Stout J (2015) Advective hydrogel membrane chromatography for monoclonal antibody purification in bioprocessing. Biotechnol Prog 31(4):974–982. doi:10.1002/btpr.2113

    Article  CAS  PubMed  Google Scholar 

  320. Nachman M, Azad AR, Bailon P (1992) Efficient recovery of recombinant proteins using membrane-based immunoaffinity chromatography (MIC). Biotechnol Bioeng 40(5):564–571. doi:10.1002/bit.260400503

    Article  CAS  PubMed  Google Scholar 

  321. Kuczewski M, Fraud N, Faber R, Zarbis-Papastoitsis G (2010) Development of a polishing step using a hydrophobic interaction membrane adsorber with a PER.C6-derived recombinant antibody. Biotechnol Bioeng 105(2):296–305. doi:10.1002/bit.22538

    Article  CAS  PubMed  Google Scholar 

  322. Kanavova N, Kosior A, Antosova M, Faber R, Polakovic M (2012) Application of a micromembrane chromatography module to the examination of protein adsorption equilibrium. J Sep Sci 35(22):3177–3183. doi:10.1002/jssc.201200396

    Article  CAS  PubMed  Google Scholar 

  323. Rathore AS, Muthukumar S (2014) High-throughput process development: II. Membrane chromatography. Methods Mol Biol 1129:39–44. doi:10.1007/978-1-62703-977-2_4

    Article  CAS  PubMed  Google Scholar 

  324. Close EJ, Salm JR, Iskra T, Sorensen E, Bracewell DG (2013) Fouling of an anion exchange chromatography operation in a monoclonal antibody process: visualization and kinetic studies. Biotechnol Bioeng 110(9):2425–2435. doi:10.1002/bit.24898

    Article  CAS  PubMed  Google Scholar 

  325. Corbett R, Carta G, Iskra T, Gallo C, Godavarti R, Salm JR (2013) Structure and protein adsorption mechanisms of clean and fouled tentacle-type anion exchangers used in a monoclonal antibody polishing step. J Chromatogr A 1278:116–125. doi:10.1016/j.chroma.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  326. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36(3):609–628. doi:10.1002/jssc.201200784

    Article  CAS  PubMed  Google Scholar 

  327. Bhut BV, Christensen KA, Husson SM (2010) Membrane chromatography: protein purification from E. coli lysate using newly designed and commercial anion-exchange stationary phases. J Chromatogr A 1217(30):4946–4957. doi:10.1016/j.chroma.2010.05.049

    Article  CAS  PubMed  Google Scholar 

  328. Boi C (2007) Membrane adsorbers as purification tools for monoclonal antibody purification. J Chromatogr B Analyt Technol Biomed Life Sci 848(1):19–27. doi:10.1016/j.jchromb.2006.08.044

    Article  CAS  PubMed  Google Scholar 

  329. Herigstad MO, Gurgel PV, Carbonell RG (2011) Transport and binding characterization of a novel hybrid particle impregnated membrane material for bioseparations. Biotechnol Prog 27(1):129–139. doi:10.1002/btpr.502

    Article  CAS  PubMed  Google Scholar 

  330. Nestola P, Villain L, Peixoto C, Martins DL, Alves PM, Carrondo MJ, Mota JP (2014) Impact of grafting on the design of new membrane adsorbers for adenovirus purification. J Biotechnol 181:1–11. doi:10.1016/j.jbiotec.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  331. Sum CH, Chong JY, Wettig S, Slavcev RA (2014) Separation and purification of linear covalently closed deoxyribonucleic acid by Q-anion exchange membrane chromatography. J Chromatogr A 1339:214–218. doi:10.1016/j.chroma.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  332. Zhong L, Scharer J, Moo-Young M, Fenner D, Crossley L, Honeyman CH, et al. (2011) Potential application of hydrogel-based strong anion-exchange membrane for plasmid DNA purification. J Chromatogr B Analyt Technol Biomed Life Sci 879(9-10):564–572. doi:10.1016/j.jchromb.2011.01.017

    Article  CAS  PubMed  Google Scholar 

  333. Mould DL, Synge RLM (1952) Electrokinetic ultrafiltration analysis of polysaccharides. A new approach to the chromatography of large molecules. Analyst 77(921):964–969. doi:10.1039/AN9527700964

    Article  CAS  Google Scholar 

  334. Hahn R, Jungbauer A (2001) Control method for integrity of continuous beds. J Chromatogr A 908(1-2):179–184

    CAS  PubMed  Google Scholar 

  335. Xie S, Allington RW, Frechet JM, Svec F (2002) Porous polymer monoliths: an alternative to classical beads. Adv Biochem Eng Biotechnol 76:87–125

    CAS  PubMed  Google Scholar 

  336. Barroso T, Hussain A, Roque AC, Aguiar-Ricardo A (2013) Functional monolithic platforms: chromatographic tools for antibody purification. Biotechnol J 8(6):671–681. doi:10.1002/biot.201200328

    Article  CAS  PubMed  Google Scholar 

  337. Rajamanickam V, Herwig C, Spadiut O (2015) Monoliths in bioprocess technology. Chromatography 2(2):195–212

    CAS  Google Scholar 

  338. Trilisky EI, Lenhoff AM (2009) Flow-dependent entrapment of large bioparticles in porous process media. Biotechnol Bioeng 104(1):127–133. doi:10.1002/bit.22370

    Article  CAS  PubMed  Google Scholar 

  339. Trilisky EI, Lenhoff AM (2010) Effect of bioparticle size on dispersion and retention in monolithic and perfusive beds. J Chromatogr A 1217(47):7372–7384. doi:10.1016/j.chroma.2010.09.040

    Article  CAS  PubMed  Google Scholar 

  340. Herigstad MO, Dimartino S, Boi C, Sarti GC (2015) Experimental characterization of the transport phenomena, adsorption, and elution in a protein A affinity monolithic medium. J Chromatogr A 1407:130–138. doi:10.1016/j.chroma.2015.06.045

    Article  CAS  PubMed  Google Scholar 

  341. Barroso T, Branco RJ, Aguiar-Ricardo A, Roque AC (2014) Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification. J Comput Aided Mol Des 28(1):25–34. doi:10.1007/s10822-013-9703-1

    Article  CAS  PubMed  Google Scholar 

  342. Dean PD, Watson DH (1979) J Chromatogr 165:301–319

    Google Scholar 

  343. Regnault V, Rivat C, Vallar L, Geschier C, Stolz JF (1992) Purification of biologically active human plasma transthyretin by dye-affinity chromatography: studies on dye leakage and possibility of heat treatment for virus inactivation. J Chromatogr 584(1):93–99

    CAS  PubMed  Google Scholar 

  344. Ongkudon CM, Kansil T, Wong C (2014) Challenges and strategies in the preparation of large-volume polymer-based monolithic chromatography adsorbents. J Sep Sci 37(5):455–464. doi:10.1002/jssc.201300995

    Article  CAS  PubMed  Google Scholar 

  345. Arrua RD, Haddad PR, Hilder EF (2013) Monolithic cryopolymers with embedded nanoparticles. II Capillary liquid chromatography of proteins using charged embedded nanoparticles. J Chromatogr A 1311:121–126. doi:10.1016/j.chroma.2013.08.077

    Article  CAS  PubMed  Google Scholar 

  346. Guo SZ, Yang X, Heuzey MC, Therriault D (2015) 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale 7(15):6451–6456. doi:10.1039/c5nr00278h

    Article  CAS  PubMed  Google Scholar 

  347. Krejcova L, Nejdl L, Rodrigo MA, Zurek M, Matousek M, Hynek D, et al. (2014) 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens Bioelectron 54:421–427. doi:10.1016/j.bios.2013.10.031

    Article  CAS  PubMed  Google Scholar 

  348. Lee W, Kwon D, Choi W, Jung GY, Jeon S (2015) 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci Rep 5:7717. doi:10.1038/srep07717

    Article  CAS  PubMed  Google Scholar 

  349. Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS, Lu N, et al. (2014) 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun 5:3329. doi:10.1038/ncomms4329

    Article  CAS  PubMed  Google Scholar 

  350. Guo SZ, Heuzey MC, Therriault D (2014) Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures. Langmuir 30(4):1142–1150. doi:10.1021/la4036425

    Article  CAS  PubMed  Google Scholar 

  351. Liu W, Li Y, Feng S, Ning J, Wang J, Gou M, et al. (2014) Magnetically controllable 3D microtissues based on magnetic microcryogels. Lab Chip 14(15):2614–2625. doi:10.1039/c4lc00081a

    Article  CAS  PubMed  Google Scholar 

  352. Wang X, Schroder HC, Feng Q, Draenert F, Muller WE (2013) The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 11(3):718–746. doi:10.3390/md11030718

    Article  CAS  PubMed  Google Scholar 

  353. Wang X, Schroder HC, Grebenjuk V, Diehl-Seifert B, Mailander V, Steffen R, et al. (2014) The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 12(2):1131–1147. doi:10.3390/md12021131

    Article  CAS  PubMed  Google Scholar 

  354. Yao Q, Wei B, Liu N, Li C, Guo Y, Shamie AN, et al. (2015) Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing. Tissue Eng Part A 21(7-8):1388–1397. doi:10.1089/ten.TEA.2014.0280

    Article  CAS  PubMed  Google Scholar 

  355. Farahani RD, Chizari K, Therriault D (2014) Three-dimensional printing of freeform helical microstructures: a review. Nanoscale 6(18):10470–10485. doi:10.1039/c4nr02041c

    Article  CAS  PubMed  Google Scholar 

  356. Guo SZ, Gosselin F, Guerin N, Lanouette AM, Heuzey MC, Therriault D (2013) Solvent-cast three-dimensional printing of multifunctional microsystems. Small 9(24):4118–4122. doi:10.1002/smll.201300975

    Article  CAS  PubMed  Google Scholar 

  357. Lee H, Fang NX (2012) Micro 3D printing using a digital projector and its application in the study of soft materials mechanics. J Vis Exp 69:e4457. doi:10.3791/4457

    Article  CAS  Google Scholar 

  358. Qin Z, Compton BG, Lewis JA, Buehler MJ (2015) Structural optimization of 3D-printed synthetic spider webs for high strength. Nat Commun 6:7038. doi:10.1038/ncomms8038

    Article  CAS  PubMed  Google Scholar 

  359. Shin D, Kim J, Yoo DS, Kim K (2015) Design of 3D isotropic metamaterial device using smart transformation optics. Opt Express 23(17):21892–21898. doi:10.1364/oe.23.021892

    Article  CAS  PubMed  Google Scholar 

  360. Amor-Coarasa A, Kelly JM, Babich JW (2015) Synthesis of [11C]palmitic acid for PET imaging using a single molecular sieve 13X cartridge for reagent trapping, radiolabeling and selective purification. Nucl Med Biol 42(8):685–690. doi:10.1016/j.nucmedbio.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  361. Gross BC, Anderson KB, Meisel JE, McNitt MI, Spence DM (2015) Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis. Anal Chem 87(12):6335–6341. doi:10.1021/acs.analchem.5b01202

    Article  CAS  PubMed  Google Scholar 

  362. Liu X, Lei Z, Liu F, Liu D, Wang Z (2014) Fabricating three-dimensional carbohydrate hydrogel microarray for lectin-mediated bacterium capturing. Biosens Bioelectron 58:92–100. doi:10.1016/j.bios.2014.02.056

    Article  CAS  PubMed  Google Scholar 

  363. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ (2015) Emerging applications of bedside 3D printing in plastic surgery. Front Surg 2:25. doi:10.3389/fsurg.2015.00025

    Article  PubMed  Google Scholar 

  364. Truskett VN, Watts MP (2006) Trends in imprint lithography for biological applications. Trends Biotechnol 24(7):312–317. doi:10.1016/j.tibtech.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  365. Tseng P, Murray C, Kim D, Di Carlo D (2014) Research highlights: printing the future of microfabrication. Lab Chip 14(9):1491–1495. doi:10.1039/c4lc90023e

    Article  CAS  PubMed  Google Scholar 

  366. Cheong WJ, Ali F, Kim YS, Lee JW (2013) Comprehensive overview of recent preparation and application trends of various open tubular capillary columns in separation science. J Chromatogr A 1308:1–24. doi:10.1016/j.chroma.2013.07.107

    Article  CAS  PubMed  Google Scholar 

  367. Thayer JR, Flook KJ, Woodruff A, Rao S, Pohl CA (2010) New monolith technology for automated anion-exchange purification of nucleic acids. J Chromatogr B Analyt Technol Biomed Life Sci 878(13-14):933–941. doi:10.1016/j.jchromb.2010.01.030

    Article  CAS  PubMed  Google Scholar 

  368. Dinh NP, Cam QM, Nguyen AM, Shchukarev A, Irgum K (2009) Functionalization of epoxy-based monoliths for ion exchange chromatography of proteins. J Sep Sci 32(15-16):2556–2564. doi:10.1002/jssc.200900243

    Article  CAS  PubMed  Google Scholar 

  369. Du K (2014) Peptide immobilized monolith containing tentacle-type functionalized polymer chains for high-capacity binding of immunoglobulin G. J Chromatogr A 1374:164–170. doi:10.1016/j.chroma.2014.11.060

    Article  CAS  PubMed  Google Scholar 

  370. Hanora A, Savina I, Plieva FM, Izumrudov VA, Mattiasson B, Galaev IY (2006) Direct capture of plasmid DNA from non-clarified bacterial lysate using polycation-grafted monoliths. J Biotechnol 123(3):343–355. doi:10.1016/j.jbiotec.2005.11.017

    Article  CAS  PubMed  Google Scholar 

  371. Savina IN, Galaev IY, Mattiasson B (2006) Ion-exchange macroporous hydrophilic gel monolith with grafted polymer brushes. J Mol Recognit 19(4):313–321. doi:10.1002/jmr.774

    Article  CAS  PubMed  Google Scholar 

  372. Singh NK, Dsouza RN, Grasselli M, Fernandez-Lahore M (2014) High capacity cryogel-type adsorbents for protein purification. J Chromatogr A 1355:143–148. doi:10.1016/j.chroma.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  373. Tao SP, Zheng J, Sun Y (2015) Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith. J Chromatogr A 1389:104–111. doi:10.1016/j.chroma.2015.02.051

    Article  CAS  PubMed  Google Scholar 

  374. Gagnon P (2010) Monoliths open the door to key growth sectors. Bioprocess Int

    Google Scholar 

  375. Martin C, Coyne J, Carta G (2005) Properties and performance of novel high-resolution/highpermeability ion-exchange media for protein chromatography. J Chromatogr A 1069(1):43–52

    CAS  PubMed  Google Scholar 

  376. Hoshino Y, Kodama T, Okahata Y, Shea KJ (2008) Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 130:15242–15243

    CAS  PubMed  Google Scholar 

  377. Hoshino Y, Urakami T, Kodama T, Koide H, Oku N, Okahata Y, Shea KJ (2009) Design of synthetic polymer nanoparticles that capture and neutralize a toxic peptide. Small 5(13):1562–1568

    CAS  PubMed  Google Scholar 

  378. Zeng Z, Hoshino Y, Rodriguez A, Yoo H, Shea KJ (2010) Synthetic polymer nanoparticles with antibody-like affinity for a hydrophilic peptide. ACS Nano 4(1):199–204

    CAS  PubMed  Google Scholar 

  379. Wong G (2009) Biotech scientists bank on big pharma’s biologics push. Nat Biotechnol 27(3):293–295. doi:10.1038/nbt0309-293

    Article  CAS  Google Scholar 

  380. Dinon F, Salvalaglio M, Gallotta A, Beneduce L, Pengo P, Cavallotti C, Fassina G (2011) Structural refinement of protein A mimetic peptide. J Mol Recognit 24(6):1087–1094. doi:10.1002/jmr.1157

    Article  PubMed  Google Scholar 

  381. Thompson AD, Dugan A, Gestwicki JE, Mapp AK (2012) Fine-tuning multiprotein complexes using small molecules. ACS Chem Biol 7(8):1311–1320. doi:10.1021/cb300255p

    Article  CAS  PubMed  Google Scholar 

  382. Ulucan O, Eyrisch S, Helms V (2012) Druggability of dynamic protein-protein interfaces. Curr Pharm Des 18(30):4599–4606

    CAS  PubMed  Google Scholar 

  383. Lee S-H, Hoshino Y, Randall AJ, Zeng Z, Baldi PJ, Doong R-a, Shea KJ (2012) Engineered synthetic polymer nanoparticles as IgG affinity ligands. J Am Chem Soc 134(38):15765–15772

    CAS  PubMed  Google Scholar 

  384. Hoshino Y, Arata Y, Yonamine Y, Lee S-H, Yamasaki A, Tsuhara R, et al. (2015) Preparation of nanogel-immobilized porous gel beads for affinity separation of proteins: fusion of nano and micro gel materials. Polym J 47(2):220–225. doi:10.1038/pj.2014.101

    Article  CAS  Google Scholar 

  385. Box GEP (1976) Science and statistics. J Am Stat Assoc 71(356):791–799

    Google Scholar 

  386. Whitehead AN, Russell B (1963) Principia mathematica, vol III. 2nd edn. Cambridge University Press, New York

    Google Scholar 

  387. Hillestad M, Nesvik GO (1994) A comparison of deductive and inductive models for product quality estimation. In: Bonvin D (ed) IFAC advanced control of chemical processes. Pergamon, Kyoto, pp 327–332

    Google Scholar 

  388. Hurford A (2012) Mechanistic models: what is the value of understanding? Just simple enough: the art of mathematical modelling, vol 2016

    Google Scholar 

  389. Burden F, Winkler D (2008) Bayesian regularization of neural networks. Methods Mol Biol 458:25–44

    PubMed  Google Scholar 

  390. Insaidoo FK, Rauscher MA, Smithline SJ, Kaarsholm NC, Feuston BP, Ortigosa AD, et al. (2015) Targeted purification development enabled by computational biophysical modeling. Biotechnol Prog 31(1):154–164. doi:10.1002/btpr.2023

    Article  CAS  PubMed  Google Scholar 

  391. Kayala MA, Azencott CA, Chen JH, Baldi P (2011) Learning to predict chemical reactions. J Chem Inf Model 51(9):2209–2222. doi:10.1021/ci200207y

    Article  CAS  PubMed  Google Scholar 

  392. Kayala MA, Baldi P (2012) ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning. J Chem Inf Model 52(10):2526–2540. doi:10.1021/ci3003039

    Article  CAS  PubMed  Google Scholar 

  393. Osberghaus A, Hepbildikler S, Nath S, Haindl M, von Lieres E, Hubbuch J (2012) Optimizing a chromatographic three component separation: a comparison of mechanistic and empiric modeling approaches. J Chromatogr A 1237:86–95. doi:10.1016/j.chroma.2012.03.029

    Article  CAS  PubMed  Google Scholar 

  394. Hanke AT, Ottens M (2014) Purifying biopharmaceuticals: knowledge-based chromatographic process development. Trends Biotechnol 32(4):210–220. doi:10.1016/j.tibtech.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  395. Heinonen J, Kukkonen S, Sainio T (2014) Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation. J Chromatogr A 1358:181–191. doi:10.1016/j.chroma.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  396. Korifi R, Le Dreau Y, Dupuy N (2014) Comparative study of the alignment method on experimental and simulated chromatographic data. J Sep Sci 37(22):3276–3291. doi:10.1002/jssc.201400700

    Article  CAS  PubMed  Google Scholar 

  397. Marks RE, Schnabl H (1999) Genetic algorithms and neural networks: a comparison based on the repeated prisoners dilemma. In: Brenner T (ed) Computational techniques for modelling learning in economics, vol 11. Springer, pp 197–219

    Google Scholar 

  398. Brooks CA, Cramer SM (1992) Steric mass-action ion exchange: displacement profiles and induced salt gradients. AIChE J 38(12):1969–1978. doi:10.1002/aic.690381212

    Article  CAS  Google Scholar 

  399. Jungbauer A, Carta G (2010) Protein chromatography: process development and scale-up, 1st edn. Wiley

    Google Scholar 

  400. Guiochon GF, Felinger A, Shirazi DG (2006) Fundamentals of preparative and nonlinear chromatography, 2nd edn. Academic

    Google Scholar 

  401. Guiochon GL, Lin B (2003) Modeling for preparative chromatography, 1st edn. Academic

    Google Scholar 

  402. Lopez ZK, Tejeda A, Montesinos RM, Magana I, Guzman R (1997) Modeling column regeneration effects on ion-exchange chromatography. J Chromatogr A 791(1-2):99–107

    CAS  PubMed  Google Scholar 

  403. Karlsson D, Jakobsson N, Axelsson A, Nilsson B (2004) Model-based optimization of a preparative ion-exchange step for antibody purification. J Chromatogr A 1055(1-2):29–39

    CAS  PubMed  Google Scholar 

  404. Edwards-Parton S, Thornhill NF, Bracewell DG, Liddell JM, Titchener-Hooker NJ (2008) Principal component score modeling for the rapid description of chromatographic separations. Biotechnol Prog 24(1):202–208. doi:10.1021/bp070240j

    Article  CAS  PubMed  Google Scholar 

  405. Susanto A, Herrmann T, von Lieres E, Hubbuch J (2007) Investigation of pore diffusion hindrance of monoclonal antibody in hydrophobic interaction chromatography using confocal laser scanning microscopy. J Chromatogr A 1149(2):178–188. doi:10.1016/j.chroma.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  406. Ishihara T, Kadoya T, Endo N, Yamamoto S (2006) Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification. J Chromatogr A 1114(1):97–101. doi:10.1016/j.chroma.2006.02.042

    Article  CAS  PubMed  Google Scholar 

  407. Ishihara T, Kadoya T, Yamamoto S (2007) Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins. J Chromatogr A 1162(1):34–40. doi:10.1016/j.chroma.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  408. Ishihara T, Yamamotob S (2005) Optimization of monoclonal antibody purification by ion-exchange chromatography. Application of simple methods with linear gradient elution experimental data. J Chromatogr A 1069(1):99–106

    CAS  PubMed  Google Scholar 

  409. Muller-Spath T, Strohlein G, Aumann L, Kornmann H, Valax P, Delegrange L, et al. (2011) Model simulation and experimental verification of a cation-exchange IgG capture step in batch and continuous chromatography. J Chromatogr A 1218(31):5195–5204. doi:10.1016/j.chroma.2011.05.103

    Article  CAS  PubMed  Google Scholar 

  410. Osberghaus A, Hepbildikler S, Nath S, Haindl M, von Lieres E, Hubbuch J (2012) Determination of parameters for the steric mass action model--a comparison between two approaches. J Chromatogr A 1233:54–65. doi:10.1016/j.chroma.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  411. Westerberg K, Broberg-Hansen E, Sejergaard L, Nilsson B (2013) Model-based risk analysis of coupled process steps. Biotechnol Bioeng 110(9):2462–2470. doi:10.1002/bit.24909

    Article  CAS  PubMed  Google Scholar 

  412. Lapelosa M, Patapoff TW, Zarraga IE (2015) Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants. Biophys Chem 207:1–6. doi:10.1016/j.bpc.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  413. Kluters S, Wittkopp F, Johnck M, Frech C (2015) Application of linear pH gradients for the modeling of ion exchange chromatography: separation of monoclonal antibody monomer from aggregates. J Sep Sci. doi:10.1002/jssc.201500994

  414. Mazumder J, Zhu J, Bassi AS, Ray AK (2009) Modeling and simulation of liquid-solid circulating fluidized bed ion exchange system for continuous protein recovery. Biotechnol Bioeng 104(1):111–126. doi:10.1002/bit.22368

    Article  CAS  PubMed  Google Scholar 

  415. Xenopoulos A (2015) A new, integrated, continuous purification process template for monoclonal antibodies: process modeling and cost of goods studies. J Biotechnol 213:42–53. doi:10.1016/j.jbiotec.2015.04.020

  416. Teeters M, Benner T, Bezila D, Shen H, Velayudhan A, Alred P (2009) Predictive chromatographic simulations for the optimization of recovery and aggregate clearance during the capture of monoclonal antibodies. J Chromatogr A 1216(33):6134–6140. doi:10.1016/j.chroma.2009.06.066

    Article  CAS  PubMed  Google Scholar 

  417. Ladiwala A, Rege K, Breneman CM, Cramer SM (2005) A priori prediction of adsorption isotherm parameters and chromatographic behavior in ion-exchange systems. Proc Natl Acad Sci U S A 102(33):11710–11715. doi:10.1073/pnas.0408769102

    Article  CAS  PubMed  Google Scholar 

  418. Guelat B, Strohlein G, Lattuada M, Delegrange L, Valax P, Morbidelli M (2012) Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography. J Chromatogr A 1253:32–43. doi:10.1016/j.chroma.2012.06.081

    Article  CAS  PubMed  Google Scholar 

  419. Sarangapani PS, Hudson SD, Jones RL, Douglas JF, Pathak JA (2015) Critical examination of the colloidal particle model of globular proteins. Biophys J 108(3):724–737. doi:10.1016/j.bpj.2014.11.3483

    Article  CAS  PubMed  Google Scholar 

  420. Lang KM, Kittelmann J, Durr C, Osberghaus A, Hubbuch J (2015) A comprehensive molecular dynamics approach to protein retention modeling in ion exchange chromatography. J Chromatogr A 1381:184–193. doi:10.1016/j.chroma.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  421. Paloni M, Cavallotti C (2015) Molecular modeling of the affinity chromatography of monoclonal antibodies. Methods Mol Biol 1286:321–335. doi:10.1007/978-1-4939-2447-9_25

    Article  CAS  PubMed  Google Scholar 

  422. Kisley L, Chen J, Mansur AP, Dominguez-Medina S, Kulla E, Kang MK, et al. (2014) High ionic strength narrows the population of sites participating in protein ion-exchange adsorption: a single-molecule study. J Chromatogr A 1343:135–142. doi:10.1016/j.chroma.2014.03.075

    Article  CAS  PubMed  Google Scholar 

  423. Kisley L, Poongavanam M-V, Kourentzi K, Willson RC, Landes CF (2015) pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface. J Separation Sci. doi:10.1002/jssc.201500809

  424. Marek W, Muca R, Wos S, Piatkowski W, Antos D (2013) Isolation of monoclonal antibody from a Chinese hamster ovary supernatant. II: Dynamics of the integrated separation on ion exchange and hydrophobic interaction chromatography media. J Chromatogr A 1305:64–75. doi:10.1016/j.chroma.2013.06.076

    Article  CAS  PubMed  Google Scholar 

  425. Baumann P, Hahn T, Hubbuch J (2015) High-throughput micro-scale cultivations and chromatography modeling: powerful tools for integrated process development. Biotechnol Bioeng 112(10):2123–2133. doi:10.1002/bit.25630

    Article  CAS  PubMed  Google Scholar 

  426. Huuk TC, Hahn T, Osberghaus A, Hubbuch J (2014) Model-based integrated optimization and evaluation of a multi-step ion exchange chromatography. Separation and Purification Technology 136:207–222. doi:10.1016/j.seppur.2014.09.012

    Article  CAS  Google Scholar 

  427. Sharma C, Malhotra D, Rathore AS (2011) Review of computational fluid dynamics applications in biotechnology processes. Biotechnol Prog 27(6):1497–1510

    CAS  PubMed  Google Scholar 

  428. Joshi V, Shivach T, Kumar V, Yadav N, Rathore A (2014) Avoiding antibody aggregation during processing: establishing hold times. Biotechnol J 9(9):1195–1205. doi:10.1002/biot.201400052

    Article  CAS  PubMed  Google Scholar 

  429. Lapelosa M, Patapoff TW, Zarraga IE (2014) Molecular simulations of the pairwise interaction of monoclonal antibodies. J Phys Chem B 118(46):13132–13141. doi:10.1021/jp508729z

    Article  CAS  PubMed  Google Scholar 

  430. Helling C, Borrmann C, Strube J (2012) Optimal integration of directly combined hydrophobic interaction and ion exchange chromatography purification processes. Chem Eng Technol 35(10):1786–1796. doi:10.1002/ceat.201200043

    Article  CAS  Google Scholar 

  431. Buyel JF, Woo JA, Cramer SM, Fischer R (2013) The use of quantitative structure–activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production. J Chromatogr A 1322:18–28. doi:10.1016/j.chroma.2013.10.076

    Article  CAS  PubMed  Google Scholar 

  432. Kruhlak NL, Benz RD, Zhou H, Colatsky TJ (2012) (Q)SAR modeling and safety assessment in regulatory review. Clin Pharmacol Ther 91(3):529–534. doi:10.1038/clpt.2011.300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Yan Yao, Ph.D., Associate Director, Bristol-Myers Squibb, and Gregory Barker, Ph.D., Senior Engineer, Bristol-Myers Squibb for their critical review and feedback. The authors would also like to thank Professor Giorgio Carta, Ph.D., School of Engineering and Applied Sciences, University of Virginia, Arch Creasy, graduate student at the School of Engineering and Applied Sciences, University of Virginia, and aforementioned colleagues Gregory Barker and Yan Yao for the generous permission to reproduce Fig. 6, and Gregory Barker for the generous provision of Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nripen Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Singh, N., Herzer, S. (2017). Downstream Processing Technologies/Capturing and Final Purification. In: Kiss, B., Gottschalk, U., Pohlscheidt, M. (eds) New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins. Advances in Biochemical Engineering/Biotechnology, vol 165. Springer, Cham. https://doi.org/10.1007/10_2017_12

Download citation

Publish with us

Policies and ethics