Skip to main content

Vegetable Oil-Biorefinery

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 166))

Abstract

Conventional vegetable oil mills are complex plants, processing oil, fruits, or seeds to vegetable fats and oils of high quality and predefined properties. Nearly all by-products are used. However, most of the high valuable plant substances occurring in oil fruits or seeds besides the oil are used only in low price applications (proteins as animal feeding material) or not at all (e.g., phenolics). This chapter describes the state-of-the-art of extraction and use of oilseed/oil fruit proteins and phyto-nutrients in order to move from a conventional vegetable oil processing plant to a proper vegetable oil-biorefinery producing a wide range of different high value bio-based products.

This is a preview of subscription content, log in via an institution.

References

  1. OVID (2015) http://www.ovid-verband.de/unsere-branche/daten-und-grafiken/pflanzenoel/

  2. Herseczki J, Kazmi A, Luque R, Luna D (2012) Secondary processing of plant oils. In: Kazmi A (ed) Advanced oil crop biorefineries, RSC Green Chemistry No. 14, Cambridge, pp 166–202

    Google Scholar 

  3. Ugolini L, De Nicola G, Palmieri S (2008) Use of reverse micelles for the simultaneous extraction of oil, proteins, and glucosinolates from cruciferous oilseeds. J Agric Food Chem 56:1595–1601

    Article  CAS  PubMed  Google Scholar 

  4. Jensen SK, Olsen HS, Sørensen H (1990) Aqueous enzymatic processing of rapeseed for production of high quality products. In: Shahidi F (ed) Canola and rapeseed-production, chemistry, nutrition and processing technology. Van Nostran Reinhold, New York, pp. 331–343

    Google Scholar 

  5. Bagger C, Bellostas N, Jensen SK, Sørensen H, Sørensen JC, Sørensen S (2007) Processing - bioprocessing of oilseed rape in bioenergy production and value-added utilization of remaining seed components. In: Tingdon FU, Chunyun G (eds) Proceedings of the 12th International Rapeseed Congress, vol. 5. Science Press USA Inc., Wuhan, China

    Google Scholar 

  6. Anon. (1998) Aqueous enzymatic extraction of oil from rapeseeds. Manufacture of food products and beverages. Environmental Management Centre, International Cleaner Production Information Clearinghouse, Denmark, 1991–1994

    Google Scholar 

  7. Bagger CL, Sørensen H, Sørensen JC, Sørensen S (2003) Biorefining, the soft processing alternative. In: Proceedings of the 11th GCIRC International Rapeseed Congress, Copenhagen, Denmark, p 650

    Google Scholar 

  8. Bellostas N, Sørensen JC, Sørensen H (2007) Biofumigation: from the “classical” approach to the use of biorefined glucosinolates as natural plant protection agents. GCIRC Bulletin n°2

    Google Scholar 

  9. OVID (2012) http://www.ovid-verband.de/fileadmin/downloads/OVID_Positionspapier_Proteinstrategie_120514.pdf

  10. Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27(1):30–39

    Article  CAS  PubMed  Google Scholar 

  11. Nanda M, Yuan Z, Qin W, Poirier M, Chunbao X (2014) Purification of crude glycerol using acidification: effects of acid types and product characterization. Austin J Chem Eng 1:1–7

    Google Scholar 

  12. Mothes G, Schnorpfeil C, Ackermann J-U (2007) Production of PHB from crude glycerol. Eng Life Sci 7:475–479

    Article  CAS  Google Scholar 

  13. Chatzifragkou A, Papanikolaou S (2012) Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl Microbiol Biotechnol 95(1):13–27

    Article  CAS  PubMed  Google Scholar 

  14. Kerr B, Shurson G (2011) Biodiesel- quality, emissions and by-products. InTech

    Google Scholar 

  15. Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep 9:9–14

    Article  Google Scholar 

  16. Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sust Energ Rev 16(5):2671–2686

    Article  CAS  Google Scholar 

  17. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348

    Article  CAS  Google Scholar 

  18. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219

    Article  CAS  PubMed  Google Scholar 

  19. Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31(1):20–28

    Article  CAS  PubMed  Google Scholar 

  20. Koutinas AA, Wang R-H, Webb C (2007) The biochemurgist –bioconversion of agricultural raw materials for chemical production. Biofuels Bioprod Biorefin 1(1):24–38

    Article  CAS  Google Scholar 

  21. Kachrimanidou V, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Yanniotis S, Kookos I, Koutinas AA (2013) Utilisation of by-products from sunflower-based biodiesel production processes for the production of fermentation feedstock. Waste Biomass Valorization 4(3):529–537

    Article  CAS  Google Scholar 

  22. Mattam AJ, Clomburg JM, Gonzalez R, Yazdani SS (2013) Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett 35(6):831–842

    Article  CAS  PubMed  Google Scholar 

  23. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnol Biofuels 5:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jensen TØ, Kvist T, Mikkelsen MJ, Christensen PV, Westermann P (2012) Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum. J Ind Microbiol Biotechnol 39(5):709–717

    Article  CAS  PubMed  Google Scholar 

  25. Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop K-D (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93(3):1057–1063

    Article  CAS  Google Scholar 

  26. Wiesen S, Tippkötter N, Muffler K, Suck K, Sohling U, Ruf N, Ulber R (2014) Adsorptive Vorbehandlung von Rohglycerin für die 1,3-Propandiol Fermentation mit Clostridium diolis. Chemie Ing Tech 86(1–2):129–135

    Article  CAS  Google Scholar 

  27. Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10(6):340–351

    Article  CAS  Google Scholar 

  28. Hong A-A, Cheng K-K, Peng F, Zhou S, Sun Y, Liu C-M, Liu D-H (2009) Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biotechnol 84(10):1576–1581

    Article  CAS  Google Scholar 

  29. Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76(8):2397–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Metsoviti M, Zeng A-P, Koutinas AA, Papanikolaou S (2013) Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol 163(4):408–418

    Article  CAS  PubMed  Google Scholar 

  31. Maru BT, Constanti M, Stchigel AM, Medina F, Sueiras JE (2013) Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp. Biotechnol Prog 29(1):31–38

    Article  CAS  PubMed  Google Scholar 

  32. Zheng X, Jin K, Zhang L, Wang G, Liu Y (2015) Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol. Braz J Microbiol 7:129–135

    Google Scholar 

  33. Oh B-R, Seo J-W, Heo S-Y, Hong W-K, Luo LH, Kim S, Kwon O, Sohn J-H, Joe M, Park D-H, Kim CH (2012) Enhancement of ethanol production from glycerol in a Klebsiella pneumoniae mutant strain by the inactivation of lactate dehydrogenase. Process Biochem 47(1):156–159

    Article  CAS  Google Scholar 

  34. Zhao Y-N, Chen G, Yao S-J (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 32(2):93–99

    Article  CAS  Google Scholar 

  35. Kośmider A, Drozdzyńska A, Blaszka K, Leja K, Czaczyk K (2010) Propionic acid production by Propionibacterium freudenreichii ssp. shermanii using crude glycerol and whey lactose industrial wastes. Pol J Environ Stud 19(6):1249–1253

    Google Scholar 

  36. André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31(2):407–416

    Article  CAS  Google Scholar 

  37. Rywińska A, Juszczyk P, Wojtatowicz M, Rymowicz W (2011) Chemostat study of citric acid production from glycerol by Yarrowia lipolytica. J Biotechnol 152(1–2):54–57

    Article  CAS  PubMed  Google Scholar 

  38. Liu X, Jensen PR, Workman M (2012) Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresour Technol 104:579–586

    Article  CAS  PubMed  Google Scholar 

  39. Abad S, Turon X (2015) Biotechnological production of docosahexaenoic acid using Aurantiochytrium limacinum: carbon sources comparison and growth characterization. Mar Drugs 13(12):7275–7284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rivaldi JD, Sarrouh BF, da Silva SS (2009) Current research topics in applied microbiology and microbial biotechnology. In: Mendez-Vilas A (ed) Development of biotechnological processes using glycerol from biodiesel production. Proceedings of the II international conference on environmental, industrial and applied microbiology. World Scientific, Singapore, pp. 429–433

    Google Scholar 

  41. Petitdemange E, Dürr C, Abbad-Andaloussi S, Raval G (1995) Fermentation of raw glycerol to 1, 3-propanediol by new strains ofClostridium butyricum. J Ind Microbiol 15(6):498–502

    Article  CAS  Google Scholar 

  42. González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31(9):442–446

    Article  CAS  PubMed  Google Scholar 

  43. Samul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64(3):891–898

    Article  CAS  PubMed  Google Scholar 

  44. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52(3):289–297

    Article  CAS  PubMed  Google Scholar 

  45. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913

    Article  CAS  PubMed  Google Scholar 

  46. Kurian JV (2005) A new polymer platform for the future — Sorona® from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167

    Article  CAS  Google Scholar 

  47. Zeng A, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  PubMed  Google Scholar 

  48. Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre P-L, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:963–972

    Article  CAS  Google Scholar 

  49. Kraus GA (2008) Synthetic methods for the preparation of 1,3-propanediol. Clean 36(8):648–651

    CAS  Google Scholar 

  50. Freund A (1881) Über die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Monatsh Chem 2(1):636–641

    Article  Google Scholar 

  51. Laffend LA, Nagarajan V, Nakamura CE (1997) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism.US-Patent US 5686276 A:2151–2156

    Google Scholar 

  52. Kaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64:106–118

    Article  CAS  Google Scholar 

  53. Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous and enzymatic processes for edible oil extraction. Enzym Microb Technol 19(6):402–420

    Article  CAS  Google Scholar 

  54. Cintra MO, Lopez-Munguia A, Vernon J (1986) Coconut oil extraction by a new enzymatic process. J Food Sci 51(3):695–697

    Article  Google Scholar 

  55. Sosulski K, Sosulsky FW, Coxworth E (1988) Carbohydrate hydrolysis of canola to enhance oil extraction with hexane. J Am Oil Chem Soc 65(3):357–361

    Article  CAS  Google Scholar 

  56. Frevert J, Frische R, Hart J, Wittkind J (1990) Enzymatic solventless recovery of oils from plant materials. Ger. Offen. DE 3843027

    Google Scholar 

  57. Ho CC, Chow MC, Ong SH (1992) Recovery of residual oil from centrifuge sludge palm oil mill: effect of enzyme digestion and surfactant treatment. J Am Oil Chem Soc 69(3):276–282

    Article  CAS  Google Scholar 

  58. Ohlson R (1992) Modern processing of rapeseed. J Am Oil Chem Soc 69(3):195–198

    Article  CAS  Google Scholar 

  59. Sosulski K, Sosulski FW (1993) Enzyme-aided vs. two-stage processing of canola: technology, product quality and cost evaluation. J Am Oil Chem Soc 70(9):825–829

    Article  CAS  Google Scholar 

  60. Latif S, Diosady L, Anwar F (2008) Enzyme-assisted aqueous extraction of oil and protein from canola (Brassica napus L.) seeds. Eur J Lipid Sci Technol 110(10):887–892

    Article  CAS  Google Scholar 

  61. Latif S, Anwar F (2009) Effect of aqueous enzymatic process on sunflower oil quality. J Am Oil Chem Soc 86(4):393–400

    Article  CAS  Google Scholar 

  62. Latif S, Anwar F (2011) Aqueous enzymatic sesame oil and protein extraction. Food Chem 125(2):679–684

    Article  CAS  Google Scholar 

  63. Latif S, Karaj S, Müller (2013) Quality evaluation of Jatropha seed kernel oil obtained by aqueous enzymatic, mechanical and solvent extraction: Euro Fed Lipid Congress, Book of abstracts, p 347

    Google Scholar 

  64. Heckelmann A, Kraus J-P (2010) Entwicklung eines Hochspannungsimpuls-unterstützten Verfahrens zur Verdrängungsextraktion von Ölen und funktionellen Proteinen aus Ölsaaten am Beispiel von Raps. Schlussbericht zum Forschungsvorhaben AiF 15241 BG

    Google Scholar 

  65. Nazareth ZM, Nicolas AD, Lawrence AJ (2009) Functional properties of soy protein isolates prepared from gas-supported screw-pressed soybean meal. J Am Oil Chem Soc 86:315–321

    Article  CAS  Google Scholar 

  66. Müller M, Eggers R (2014) Gas-assisted oilseed pressing on an industrial scale. J Am Oil Chem Soc 91(9):1633–1641

    Article  CAS  Google Scholar 

  67. TAMU (2015) http://foodprotein.tamu.edu/separations/protein.php

  68. Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140(1):65–72

    Article  Google Scholar 

  69. House JD, Neufeld J, Leson G (2010) Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility – corrected amino acid score method. J Agric Food Chem 58(22):11801–11807

    Article  CAS  PubMed  Google Scholar 

  70. Gonzales-Perez S, Vereijken J (2007) Sunflower proteins: overview of their physicochemical, structural and functional properties. J Sci Food Agric 87(12):2173–2191

    Article  CAS  Google Scholar 

  71. Pickard C, Neidhart S, Griesbach C (2009) Optimisation of mild acid protein extraction from defatted sunflower (Helianthus annuus L.) meal. Food Hydrocoll 23(7):1966–1973

    Article  CAS  Google Scholar 

  72. Pickard C, Eisner P, Kammerer D (2015) Pilot plant preparation of light-coloured protein isolates from de-oiled sunflower (Helianthus annus L.) press cake by mild acidic protein extraction and polyphenol adsorption. Food Hydrocoll 44:208–219

    Article  CAS  Google Scholar 

  73. Salgado P, Drago S, Molina Ortiz A (2012) Production and characterization of sunflower (Helianthus annuus L.) protein-enriched products obtained at pilot plant scale. Food Sci Technol 45(1):65–72

    CAS  Google Scholar 

  74. Salgado P, Molina-Ortiz S, Petruccelli S (2010) Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocoll 24(5):525–533

    Article  CAS  Google Scholar 

  75. Hall C, Tulbek MC, Xu Y (2006) Flaxseed. Adv Food Nutr Res 51:1–97

    Article  CAS  PubMed  Google Scholar 

  76. Vassel B, Nesbitt LL (1945) The nitrogenous constituents of flaxseed. II. The isolation of a purified protein fraction. J Biol Chem 159:571–584

    CAS  Google Scholar 

  77. Wanasundara JPD, Shahidi F (2003) Flaxseed proteins: potential food applications and process-induced changes. In: Thompson LU, Cunnane SC (eds) Flaxseed in human nutrition, 2nd edn. AOCS Press, Champaign, pp. 387–403

    Google Scholar 

  78. Oomah BD (2003) Processing of flaxseed fiber, oil, protein, and lignan. In: Thompson LU, Cunnane SC (eds) Flaxseed in human nutrition, 2nd edn. AOCS Press, Champaign, pp. 363–386

    Google Scholar 

  79. Chung MWY, Lei B, Li-Chan ECY (2005) Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.). Food Chem 90(1–2):271–279

    Article  CAS  Google Scholar 

  80. Udenigwe CC, Aluko RE (2010) Antioxidant and angiotensin converting enzyme-inhibitory properties of a flaxseed protein-derived high fischer ratio peptide mixture. J Agric Food Chem 58(8):4762–4768

    Article  CAS  PubMed  Google Scholar 

  81. Gopalan C, Ramasastri BV, Subramanian SC (2007) Nutritive value of Indian food. National Inst. Nutrition (ICMR) Press, Hyderabad

    Google Scholar 

  82. Tehrani MHH, Batal R, Kamalinejad M, Mahbubi A (2014) Extraction and purification of flaxseed proteins and studying their antibacterial activities. J Plant Sci 2(1):70–76

    Google Scholar 

  83. Rubilar M, Gutierrez C, Verdugo C, Shene C, Sineiro J (2010) Flaxseed as a source of functional ingredients. J Soil Sci Plant Nutr 10(3):373–377

    Article  Google Scholar 

  84. Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of nontoxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62(2):207–215

    Article  CAS  Google Scholar 

  85. Devappa RK, Makkar HPS, Becker K (2010) Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from Jatropha: review. J Agric Food Chem 58(11):6543–6555

    Article  CAS  PubMed  Google Scholar 

  86. Lestari D, Mulder W, Sanders J (2010) Improving Jatropha curcas seed protein recovery by using counter current multistage extraction. Biochem Eng J 50(1–2):16–23

    Article  CAS  Google Scholar 

  87. Saetae D, Kleekayai T, Jayasena V, Suntornsuk W (2011) Functional properties of protein isolate obtained from Physic nut (Jatropha curcas L.) seed cake. Food Sci Biotechnol 20(1):29–37

    Article  CAS  Google Scholar 

  88. Hamarneh AI, Heeres HJ, Broekhuis AA, Picchioni F (2010) Extraction of Jatropha curcas proteins and application in polyketone-based wood adhesives. Int J Adhes Adhes 30(7):615–625

    Article  CAS  Google Scholar 

  89. Makkar HPS, Francis G, Becker K (2008) Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J Sci Food Agric 88(9):1542–1548

    Article  CAS  Google Scholar 

  90. Devappa RK, Swamylingappa B (2008) Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J Sci Food Agric 88(5):911–919

    Article  CAS  Google Scholar 

  91. Lestari D, Mulder WJ, Sanders JPM (2011) Jatropha seed protein functional properties for technical applications. Biochem Eng J 53(3):297–304

    Article  CAS  Google Scholar 

  92. Schwenke KD (1994) Rapeseed proteins. New and developing sources of food proteins. In: Hudson BJF (ed) Chapman & Hall, London

    Google Scholar 

  93. Natsch A (2006) Untersuchung der Herstellbarkeit von Rapsproteinprodukten auf der Grundlage verschiedener Entölungsverfahren. Dissertation, TU Berlin, Berlin

    Google Scholar 

  94. Kroll J, Krause J-P, Rawel HM (2007) Native sekundäre Inhaltsstoffe in Rapssamen - Eigenschaften und Wechselwirkungen mit Proteinen. Deutsche Lebensmitel-Rundschau 103(4):149–153

    CAS  Google Scholar 

  95. Becker KW (1983) Current trends in meal desolventizing. JAOCS 60(2):216–219

    Article  CAS  Google Scholar 

  96. Krause J-P, Kroll J, Rawel HM (2007) Verarbeitung von Rapssaat–Eigenschaften und Gewinnung von Proteinen. UFOP-Schriften Heft 32. Rapsprotein in der Humanernährung

    Google Scholar 

  97. Leidt K-H, Mörl L, Pudel F, Weigel K, Zettl R (2009) Fluidized bed desolventizer for gentle rapeseed meal processing. Inform 20(11):731

    Google Scholar 

  98. Wanasundara JPD (2014) Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51(7):635–677

    Article  CAS  Google Scholar 

  99. EFSA (2013) Scientific opinion on the safety of rapeseed protein isolate as a Novel Food ingredient. EFSA J 11(10):3420

    Google Scholar 

  100. Schweizer M, Segall K, Medina S, Willardsen R, Tergesen J (2007) Rapeseed/Canola protein isolates for the use in the food industry. In: 12th International Rape Seed Congress, 25–30 March 2007, Wuhan, China

    Google Scholar 

  101. Slawski H (2011) Rapeseed protein products as fish meal replacement in fish nutrition. Dissertation, Christian-Albrechts-Universitat zu Kiel

    Google Scholar 

  102. Adem HN, Tressel R-P, Pudel F, Slawski H, Schulz C (2014) Rapeseed use in aquaculture. OCL 21(1):D105

    Article  Google Scholar 

  103. Palomino J, Metz R, Schulz J, Tressel R-P, Pudel F (2014) Rapeseed proteins for paperboard coating. Chem Ing Tech 86(8):1249–1259

    Article  CAS  Google Scholar 

  104. Pudel F, Tressel R-P, Düring K (2015) Production and properties of rapeseed albumin. Lipid Technol 27(5):1–3

    Article  CAS  Google Scholar 

  105. Schek A (2002) Sekundäre Pflanzenstoffe. Sporternährung 5:44–52

    Google Scholar 

  106. Walter B (2007) Einfluss des Reiskonsums auf die Gesundheit. ETH Zürich, Departement für Agrar- und Lebensmittelwissenschaften, p 14, 27

    Google Scholar 

  107. Patel M, Naik SN (2004) Gamma-oryzanol from rice bran oil - a review. J Sci Ind Res 63:569–578

    CAS  Google Scholar 

  108. Indira TN et al. (2004) Process for the production of oryzanol enriched fraction from rice bran oil soapstock. US-Patent US 2004/0192948 A1

    Google Scholar 

  109. Ramis-Ramos G et al. (2009) Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chem 115(2):389–404

    Article  CAS  Google Scholar 

  110. Roche J, Alignan M, Bouniols A, Cerny M, Mouloungui Z, Vear F, Merah O (2010) Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chem 121(4):990–995

    Article  CAS  Google Scholar 

  111. Xiao H, Kun W, Ruijin Y (2015) Edible coatings from sunflower head pectin to reduce lipid uptake in fried potato chips. LWT Food Sci Technol 62(2):1220–1225

    Article  CAS  Google Scholar 

  112. Fei Y, Zhao J, Liu Y, Li X, Xu Q, Wang T, Khan IA, Yang S (2015) New monoterpene glycosides from sunflower seeds and their protective effects against H2O2-induced myocardial cell injury. Food Chem 187:385–390

    Article  CAS  PubMed  Google Scholar 

  113. Popov A, Stefanov K (1968) Untersuchungen über die Zusammensetzung der Wachsbodensätze und des Sonnenblumenölwachses. Fette, Seifen, Anstrichmittel. Eur J Lipid Sci Technol 70(4):234–238

    Google Scholar 

  114. Hwang H-S, Kim S, Evans KO, Koga C, Lee Y (2015) Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Struct 5:10–20

    Article  Google Scholar 

  115. Weisz GM, Kammerer DR, Carle R (2009) Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem 115(2):758–765

    Article  CAS  Google Scholar 

  116. Bäcker S (2013) Entwicklung eines industriell einsetzbaren Herstellungs- und Aufreinigungsverfahrens für Dicaffeoylchinasäuren als antivirale Wirkstoffe aus Sonnenblumen. Schlussbericht zum FuE-Vorhaben KF2023913SK1

    Google Scholar 

  117. Thomas R, Sah NK, Sharma PB (2008) Therapeutic biology of Jatropha curcas: a mini review. Curr Pharm Biotechnol 9(4):315–324

    Article  CAS  PubMed  Google Scholar 

  118. Tomar NS, Ahanger MA, Agarwal RM (2014) Jatropha curcas: an overview. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer Science & Business Media, New York, pp. 361–385

    Chapter  Google Scholar 

  119. Devappa RK, Makkar HPS, Becker K (2011) Jatropha Diterpenes: a review. J Am Oil Chem Soc 88(3):301–322

    Article  CAS  Google Scholar 

  120. Roach JS, Devappa RK, Makkar HPS, Becker K (2012) Isolation, stability and bioactivity of Jatropha curcas phorbol esters. Fitoterapia 83(3):586–592

    Article  CAS  PubMed  Google Scholar 

  121. Idakiev HN, Pudel F, Romuli S, Müller J, Makkar H, Latif S, Karaj S, Probst L, Becker K (2014) Integrated use of Jatropha curcas. In: 12th Euro Fed Lipid Congress. Montpellier, France

    Google Scholar 

  122. Ratnadass A, Wink M (2012) The phorbol ester fraction from Jatropha curcas seed oil: potential and limits for crop protection against insect pests. Int J Mol Sci 13(12):16157–16171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Koski A, Pekkarinen S, Hopia A, Wähälä K, Heinonen M (2003) Processing of rapeseed oil: effects on sinapinic acid derivative content and oxidative stability. Eur Food Res 217(12):110–114

    Article  CAS  Google Scholar 

  124. Wakamatsu D, Morimura S, Sawa T, Kida K, Nakai C, Maeda H (2005) Isolation, identification, and structure of a potent alkyl-peroxyl radical scavenger in crude canola oil, canolol. Biosci Biotechnol Biochem 69(8):1568–1574

    Article  CAS  PubMed  Google Scholar 

  125. Matthäus B (2012) Effect of canolol on oxidation of edible oils. In: Thiyam-Holländer U, Eskin NAM, Matthäus B (eds) Canola and rapeseed: production, processing, food quality, and nutrition. CRC Press, Boca Raton, p 317

    Chapter  Google Scholar 

  126. Moltke Sørensen AD, Friel J, Winkler-Moser JK, Jacobsen C, Huidrom D, Reddy N, Thiyam-Holländer U (2013) Impact of endogenous canola phenolics on the oxidative stability of oil-in-water emulsions. Eur J Lipid Sci Technol 115(5):501–512

    Article  CAS  Google Scholar 

  127. Pudel F, Habicht V, Piofczyk T, Matthäus B, Quirin KW, Cawelius A (2014) Fluidized bed treatment of rapeseed meal and cake as possibility for the production of canolol. OCL 21(1):D103

    Article  Google Scholar 

  128. Matthäus B, Pudel F, Chen Y, Achary A, Thiyam-Holländer U (2014) Impact of canolol-enriched extract from heat-treated canola meal to enhance oil quality parameters in deep-frying: a comparison with rosemary extract and TBHQ-fortified oil systems. J Am Oil Chem Soc 91(12):2065–2076

    Article  CAS  Google Scholar 

  129. Thiel A, Muffler K, Tippkötter N, Suck K, Sohling U, Hruschka SM, Ulber R (2014) A novel integrated downstream processing approach to recover sinapic acid, phytic acid and proteins from rapeseed meal. J Chem Technol Biotechnol 90(11):1999–2006

    Article  CAS  Google Scholar 

  130. Goh SH, Choo YM, Ong ASH (1985) Minor components of palm oil. JAOCS 62:237–240

    Article  CAS  Google Scholar 

  131. Mazur W (2000) Phytoestrogens: occurrence in foods, and metabolism of lignans in man and pigs. Ph.D. Thesis, University of Helsinki

    Google Scholar 

  132. Barnwal P, Singh KK, Mridula D, Kumar R, Rehal J (2010) Effect of moisture content and residence time on dehulling of flaxseed. J Food Sci Technol 47(6):662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sok D-E, Cui HS, Kim MR (2009) Isolation and bioactivities of furfuran type lignan compounds from edible plants. Recent Pat Food Nutr Agric 1(1):87–95

    Article  CAS  PubMed  Google Scholar 

  134. Schröder K, Tressel R-P (2012) Schälverfahren für Leinsaat. PCT/EP 2012/055751

    Google Scholar 

  135. Lomascola A, Uzan-Boukhris E, Sigoillot J-C, Fine F (2012) Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl Microbiol Biotechnol 95(5):1105–1114

    Article  CAS  Google Scholar 

  136. Pleissner D, Venus J (2014) Agricultural residues as feedstocks for lactid acid fermentation. In: Obare et al. (eds) Green technologies for the environment, ACS Symposium Series. American Chemical Society, Washington

    Google Scholar 

  137. Mulder W, Harmsen P, Sanders J, Carre P, Kamm B, Schönicke P, Dautzenberg G (2012) Secondary processing of plant oils. In: Kazmi A (ed) Advanced oil crop biorefineries, RSC Green Chemistry No. 14, Cambridge, pp 166–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Pudel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pudel, F., Wiesen, S. (2017). Vegetable Oil-Biorefinery. In: Wagemann, K., Tippkötter, N. (eds) Biorefineries. Advances in Biochemical Engineering/Biotechnology, vol 166. Springer, Cham. https://doi.org/10.1007/10_2016_65

Download citation

Publish with us

Policies and ethics