Skip to main content

Microbial Hydrocarbon Formation from Biomass

  • Chapter
  • First Online:
Biorefineries

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 166))

Abstract

Fossil carbon sources mainly contain hydrocarbons, and these are used on a huge scale as fuel and chemicals. Producing hydrocarbons from biomass instead is receiving increased attention. Achievable yields are modest because oxygen atoms need to be removed from biomass, keeping only the lighter carbon and hydrogen atoms. Microorganisms can perform the required conversions, potentially with high selectivity, using metabolic pathways that often end with decarboxylation. Metabolic and protein engineering are used successfully to achieve hydrocarbon production levels that are relevant in a biorefinery context. This has led to pilot or demo processes for hydrocarbons such as isobutene, isoprene, and farnesene. In addition, some non-hydrocarbon fermentation products are being further converted into hydrocarbons using a final chemical step, for example, ethanol into ethene. The main advantage of direct microbial production of hydrocarbons, however, is their potentially easy recovery because they do not dissolve in fermentation broth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Straathof AJJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114:1871–1908

    Article  CAS  PubMed  Google Scholar 

  2. McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554

    Article  CAS  PubMed  Google Scholar 

  3. Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  4. Menon N, Pasztor A, Menon BRK, Kallio P, Fisher K, Akhtar MK, Leys D, Jones PR, Scrutton NS (2015) A microbial platform for renewable propane synthesis based on a fermentative butanol pathway. Biotechnol Biofuels 8:61

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rui Z, Li X, Zhu XJ, Liu J, Domigan B, Barr I, Cate JHD, Zhang WJ (2014) Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci U S A 111:18237–18242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2011) Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6:152–163

    Article  Google Scholar 

  9. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals-artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389

    CAS  PubMed  Google Scholar 

  10. Gogerty DS, Bobik TA (2010) Isobutene formation from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol 76:8004–8010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rossoni L, Hall SJ, Eastham G, Licence P, Stephens G (2015) The putative mevalonate diphosphate decarboxylase from picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene. Appl Environ Microbiol 81:2625–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cuellar MC, Straathof AJJ (2015) Biochemical conversion: biofuels by industrial fermentation. In: de Jong W, van Ommen JR (eds) Biomass as a sustainable energy source for the future. Wiley, Hoboken, pp. 403–440

    Google Scholar 

  13. Clever HL, Young CL (1987) IUPAC-NIST solubility database. Methane, vol 27/28. Pergamon Press, Oxford

    Google Scholar 

  14. Hayduk W (1994) IUPAC-NIST solubility database. Ethene, vol 57. Oxford University Press, Oxford

    Google Scholar 

  15. Shaw DG (1989) IUPAC-NIST solubility database. Hydrocarbons in water and seawater, Part I, vol 37. Pergamon Press, Oxford

    Google Scholar 

  16. Shaw DG (1989) IUPAC-NIST solubility database. Hydrocarbons with water and seawater, Part II, vol 38. Pergamon Press, Oxford

    Google Scholar 

  17. Shaw DG, Maczynski A, Goral M, Wisniewska-Goclowska B, Skrzecz A, Owczarek I, Blazej K, Haulait-Pirson M-C, Hefter GT, Kapuku F, Maczynska Z, Szafranski A (2006) IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater—revised and updated. Part 10. C11 and C12 hydrocarbons with water. J Phys Chem Ref Data 35:153–203

    Article  CAS  Google Scholar 

  18. Kleerebezem R (2014) Biochemical conversion. In: Biomass as a sustainable energy source for the future. Wiley, Hoboken, pp 441–468

    Google Scholar 

  19. Cuellar MC, van der Wielen LAM (2015) Recent advances in the microbial production and recovery of apolar molecules. Curr Opin Biotechnol 33:39–45

    Article  CAS  PubMed  Google Scholar 

  20. Heeres AS, Picone CSF, van der Wielen LAM, Cunha RL, Cuellar MC (2014) Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol 32:221–229

    Article  CAS  PubMed  Google Scholar 

  21. Tabur P, Dorin G 2012 Method for purifying bio-organic compounds from fermentation broth containing surfactants by temperature-induced phase inversion

    Google Scholar 

  22. Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  23. Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84

    Article  CAS  Google Scholar 

  24. Althoff J, Biesheuvel K, De Kok A, Pelt H, Ruitenbeek M, Spork G, Tange J, Wevers R (2013) Economic feasibility of the sugar beet-to-ethylene value chain. ChemSusChem 6:1625–1630

    Article  CAS  PubMed  Google Scholar 

  25. Marlière P (2011) Method for producing an alkene comprising step of converting an alcohol by an enzymatic dehydration step. WO 2011076691

    Google Scholar 

  26. Marlière P (2011) Method for producing an alkene comprising the step of converting an alcohol by an enzymatic dehydration step. Eur Pat Appl 2336340

    Google Scholar 

  27. Shimokawa K, Kasai Z (1970) Ethylene formation from acrylic acid by a banana pulp extract. Agric Biol Chem 34:1646–1651

    Article  CAS  Google Scholar 

  28. Abeles FB (1972) Biosynthesis and mechanism of action of ethylene. Annu Rev Plant Physiol 23:259–292

    Article  CAS  Google Scholar 

  29. Fukuda H, Ogawa T, Tanase S (1993) Ethylene production by microorganisms. Adv Microb Physiol 35:275–306

    Article  CAS  PubMed  Google Scholar 

  30. Larsson C, Snoep JL, Norbeck J, Albers E (2011) Flux balance analysis for ethylene formation in genetically engineered Saccharomyces cerevisiae. IET Syst Biol 5:245–251

    Article  CAS  PubMed  Google Scholar 

  31. Lieberman M (1979) Biosynthesis and action of ethylene. Annu Rev Plant Physiol Plant Mol Biol 30:533–591

    Article  CAS  Google Scholar 

  32. Ogawa T, Takahashi M, Fujii T, Tazaki M, Fukuda H (1990) The role of NADH-Fe(III)EDTA oxidoreductase in ethylene formation from 2-keto-4-methylthiobutyrate. J Ferment Bioeng 69:287–291

    Article  CAS  Google Scholar 

  33. Fukuda H, Ogawa T, Tazaki M, Nagahama K, Fujii T, Tanase S, Morino Y (1992) 2 Reactions are simultaneously catalyzed by a single enzyme - the arginine-dependent simultaneous formation of 2 products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem Biophys Res Commun 188:483–489

    Article  CAS  PubMed  Google Scholar 

  34. Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness P-C, Yu J (2014) Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels 7:1–11

    Article  CAS  Google Scholar 

  35. Davis JB, Squires RM (1954) Detection of microbially produced gaseous hydrocarbons other than methane. Science 119:381–382

    Article  CAS  PubMed  Google Scholar 

  36. Pavlova ON, Bukin SV, Lomakina AV, Kalmychkov GV, Ivanov VG, Morozov IV, Pogodaeva TV, Pimenov NV, Zemskaya TI (2014) Production of gaseous hydrocarbons by microbial communities of Lake Baikal bottom sediments. Microbiology 83:798–804

    Article  CAS  Google Scholar 

  37. Kallio P, Pasztor A, Thiel K, Akhtar MK, Jones PR (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5

    Google Scholar 

  38. Fukuda H, Fujii T, Ogawa T (1984) Microbial production of C3- and C4-hydrocarbons under aerobic conditions. Agric Biol Chem 48:1679–1682

    CAS  Google Scholar 

  39. Fukuda H, Kawaoka Y, Fujii T, Ogawa T (1987) Production of a gaseous saturated hydrocarbon mixture by Rhizopus japonicus under aerobic conditions. Agric Biol Chem 51:1529–1534

    CAS  Google Scholar 

  40. Roberts ES, Vaz AD, Coon MJ (1991) Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation. Proc Natl Acad Sci 88:8963–8966

    Article  CAS  PubMed  Google Scholar 

  41. Nishida Y, Itoh H, Yamazaki A (1994) On the chemical mechanism of aldehyde metabolism by cytochrome P-450. Polyhedron 13:2473–2476

    Article  CAS  Google Scholar 

  42. Fujii T, Ogawa T, Fukuda H (1987) Isobutene production by Rhodotorula minuta. Appl Microbiol Biotechnol 25:430–433

    Article  CAS  Google Scholar 

  43. Fujii T, Ogawa T, Fukuda H (1985) Production of isobutene by Rhodotorula yeasts. Agric Biol Chem 49:1541–1543

    Google Scholar 

  44. Fukuda H, Fujii T, Sukita E, Tazaki M, Nagahama S, Ogawa T (1994) Reconstitution of the isobutene-forming reaction catalyzed by cytochrome P450 and P450 reductase from Rhodotorula minuta: decarboxylation with the formation of isobutene. Biochem Biophys Res Commun 201:516–522

    Article  CAS  PubMed  Google Scholar 

  45. Shimaya C, Fujii T (2000) Cytochrome P450rm of Rhodotorula functions in the β-ketoadipate pathway for dissimilation of L-phenylalanine. J Biosci Bioeng 90:465–467

    Article  CAS  PubMed  Google Scholar 

  46. van Leeuwen BNM, van der Wulp AM, Duijnstee I, van Maris AJA, Straathof AJJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marlière P (2010) Production of alkenes by enzymatic decarboxylation of 3-hydroxyalkanoic acids. WO 2010001078

    Google Scholar 

  48. Mazaleyrat S, Delcourt M, Anissimova M, Marliere P (2015) Mevalonate diphosphate decarboxylase variants. WO2015004211 (A3)

    Google Scholar 

  49. Burk MJ, Burgard AP, Osterhout RE, Sun J, Pharkya P (2012) Microorganisms for producing butadiene and methods related thereto. WO2012177710

    Google Scholar 

  50. Pearlman PS, Chen C, Botes AL (2012) Methods of producing four carbon molecules. Pat Appl WO2012174439

    Google Scholar 

  51. Araujo AS, Souza MJB, Fernandes VJ, Diniz JC (1999) Kinetic study of isopropanol dehydration over silicoaluminophosphate catalyst. React Kinet Catal Lett 66:141–146

    Article  CAS  Google Scholar 

  52. McCoy M (2010) Braskem plans green propylene. Chem Eng News 88:11–11

    Google Scholar 

  53. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  54. Singh R (2010) Facts, growth, and opportunities in industrial biotechnology. Org Process Res Dev 15:175–179

    Article  CAS  Google Scholar 

  55. Feher FJ, Kan JK, MacAuliffe JC, McCall TF, Rodewald S, Sabo TA, Wong TH, Ploetz CD, Pickert LJ (2011) Purification of isoprene from renewable resources. US20110178261 (A1)

    Google Scholar 

  56. Morais ARC, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdal D, Bogel-Lukasik R (2015) Chemical and biological-based isoprene production: green metrics. Catal Today 239:38–43

    Article  CAS  Google Scholar 

  57. Rabinovitch-Deere CA, Oliver JW, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113:4611–4632

    Article  CAS  PubMed  Google Scholar 

  58. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  59. Schrader J, Bohlmann J (2015) Biotechnology of isoprenoids. Advances in biochemical engineering/biotechnology, vol 148. Springer International Publishing

    Google Scholar 

  60. Brennan TCR, Turner CD, Krömer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513–2522

    Article  CAS  PubMed  Google Scholar 

  61. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    Article  CAS  PubMed  Google Scholar 

  62. Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF (2014) Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. J Biotechnol 191:205–213

    Article  CAS  PubMed  Google Scholar 

  63. Wriessnegger T, Augustin P, Engleder M, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Zellnig G, Schwab H, Pichler H (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29

    Article  CAS  PubMed  Google Scholar 

  64. Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM (2012) Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51:7908–7916

    Article  CAS  PubMed  Google Scholar 

  65. Warui DM, Li N, Norgaard H, Krebs C, Bollinger JM, Booker SJ (2011) Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc 133:3316–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Domínguez de María P (2011) Recent developments in the biotechnological production of hydrocarbons: paving the way for bio-based platform chemicals. ChemSusChem 4:327–329

    Article  PubMed  CAS  Google Scholar 

  67. Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai Y-L, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2:59–62

    Article  CAS  PubMed  Google Scholar 

  68. Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci 110:7636–7641

    Article  CAS  PubMed  Google Scholar 

  69. Schneider-Belhaddad F, Kolattukudy P (2000) Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Arch Biochem Biophys 377:341–349

    Article  CAS  PubMed  Google Scholar 

  70. Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574

    Article  CAS  PubMed  Google Scholar 

  71. Zachos I, Gassmeyer SK, Bauer D, Sieber V, Hollmann F, Kourist R (2015) Photobiocatalytic decarboxylation for olefin synthesis. Chem Commun (Cambridge, England) 51:1918–1921

    Article  CAS  Google Scholar 

  72. Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in micrococcus luteus. Appl Environ Microbiol 76:1212–1223

    Article  CAS  PubMed  Google Scholar 

  73. Frias JA, Richman JE, Erickson JS, Wackett LP (2011) Purification and characterization of OleA from Xanthomonas campestris and demonstration of a non-decarboxylative Claisen condensation reaction. J Biol Chem 286:10930–10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McKenna R, Moya L, McDaniel M, Nielsen DR (2015) Comparing in situ removal strategies for improving styrene bioproduction. Bioprocess Biosyst Eng 38:165–174

    Article  CAS  PubMed  Google Scholar 

  75. McKenna R, Thompson B, Pugh S, Nielsen DR (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Factories 13

    Google Scholar 

  76. Claypool JT, Raman DR, Jarboe LR, Nielsen DR (2014) Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli. J Ind Microbiol Biotechnol 41:1211–1216

    Article  CAS  PubMed  Google Scholar 

  77. Azeem M, Borg-Karlson AK, Rajarao GK (2013) Sustainable bio-production of styrene from forest waste. Bioresour Technol 144:684–688

    Article  CAS  PubMed  Google Scholar 

  78. Fischer-Romero C, Tindall BJ, Jüttner F (1996) Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol 46:183–188

    Article  CAS  PubMed  Google Scholar 

  79. Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Article  CAS  Google Scholar 

  80. Chen J, Henderson G, Grimm CC, Lloyd SW, Laine RA (1998) Termites fumigate their nests with naphthalene. Nature 392:558–559

    Article  CAS  Google Scholar 

  81. Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    Article  CAS  PubMed  Google Scholar 

  82. Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102:9718–9722

    Article  CAS  PubMed  Google Scholar 

  83. Bäck J, Aaltonen H, Hellen H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659

    Article  CAS  Google Scholar 

  84. Heiden AC, Kobel K, Komenda M, Koppmann R, Shao M, Wildt J (1999) Toluene emissions from plants. Geophys Res Lett 26:1283–1286

    Article  CAS  Google Scholar 

  85. Strobel GA (2015) Bioprospecting-fuels from fungi. Biotechnol Lett 37:973–982

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrie J. J. Straathof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Straathof, A.J.J., Cuellar, M.C. (2017). Microbial Hydrocarbon Formation from Biomass. In: Wagemann, K., Tippkötter, N. (eds) Biorefineries. Advances in Biochemical Engineering/Biotechnology, vol 166. Springer, Cham. https://doi.org/10.1007/10_2016_62

Download citation

Publish with us

Policies and ethics