Skip to main content

Manufacturing of Proteins and Antibodies: Chapter Downstream Processing Technologies

  • Chapter
  • First Online:
New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 165))

Abstract

Cell harvesting is the separation or retention of cells and cellular debris from the supernatant containing the target molecule Selection of harvest method strongly depends on the type of cells, mode of bioreactor operation, process scale, and characteristics of the product and cell culture fluid. Most traditional harvesting methods use some form of filtration, centrifugation, or a combination of both for cell separation and/or retention. Filtration methods include normal flow depth filtration and tangential flow microfiltration. The ability to scale down predictably the selected harvest method helps to ensure successful production and is critical for conducting small-scale characterization studies for confirming parameter targets and ranges. In this chapter we describe centrifugation and depth filtration harvesting methods, share strategies for harvest optimization, present recent developments in centrifugation scale-down models, and review alternative harvesting technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ambler CM (1959) The theory of scaling up laboratory data for the sedimentation type centrifuge. Biotechnol Bioeng 1(2):185–205

    Article  CAS  Google Scholar 

  2. Bender J, Brown A, Winter C (2002) Scale-up of a disk-stack centrifuge for CHO harvest, Downstream Gab '02 abstracts. Amersham Biosciences, pp 10–11

    Google Scholar 

  3. Boychyn M, Yim S, Shamlou PA, Bulmer M, More J, Hoare M (2001) Characterization of flow intensity in continuous centrifuges for the development of laboratory mimics. Chem Eng Sci 56(16):4759–4770

    Article  CAS  Google Scholar 

  4. Boychyn M, Yim S, Bulmer M, More J, Bracewell D, Hoare M (2004) Performance prediction of industrial centrifuges using scale-down models. Bioprocess Biosyst Eng 26(6):385–391

    Article  CAS  PubMed  Google Scholar 

  5. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12(2):180–187

    Article  CAS  PubMed  Google Scholar 

  6. Fiore JV, Olson WP, Holst SL (1980) Depth filtration. In: Curling JM (ed) Methods of plasma protein fractionation. Academic Press, New York

    Google Scholar 

  7. Gerba CP, Hou K (1985) Endotoxin removal by charge-modified filters. Appl Environ Microbiol 50:1375–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Glyn J (2009) Process scale precipitation of impurities in mammalian cell culture broth. In: Gottschalk U (ed) Process scale purification of antibodies. Wiley, Hoboken

    Google Scholar 

  9. Han B, Akeprathumchai S, Wickramasinghe SR, Qian X (2003) Flocculation of biological cells: experiment vs. theory. AIChE J 49(7):1687–1701

    Article  CAS  Google Scholar 

  10. Hutchison N, Bingham N, Murrell N, Farid S, Hoare M (2006) Shear stress analysis of mammalian cell suspensions for prediction of industrial centrifugations and its verification. Biotechnol Bioeng 95:483–491

    Article  Google Scholar 

  11. Iammarino M, Nti-Gyabaah J, Chandler M, Roush D, Goklen K (2007) Impact of cell density and viability on primary clarification of mammalian cell broth. Bioprocess Int 5:38–50

    CAS  Google Scholar 

  12. Joseph A, Kenty B, Mollet M, Hwang K, Rose S, Goldrick S, Bender J, Farid SS, Titchener-Hooker N (2016) A scale-down mimic for mapping the process performance of centrifugation, depth and sterile filtration. Biotechnol Bioeng. doi:10.1002/bit.25967

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kang Y, Hamzik J, Felo M, Qi B, Lee J, Ng S, Liebisch G, Shanehsaz B, Singh N, Persaud K, Ludwig D, Balderes P (2013) Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Biotechnol Bioeng 110(11):2928–2937

    Article  CAS  PubMed  Google Scholar 

  14. Knight RA, Ostreicher EA (1998) Charge-modified filter media. In: Meltzer TH, Jornitz MW (eds) Filtration in the biopharmaceutical industry. Marcel Dekker Inc., New York

    Google Scholar 

  15. Ko H, Bhatia R (2012) Evaluation of single-use fluidized bed centrifuge system for mammalian cell harvesting. BioPharm Int 25(11):34–40

    CAS  Google Scholar 

  16. Kompala DS, Ozturk SS (2005) Optimization of high cell density perfusion bioreactors. In: Ozturk SS, Hu W-S (eds) Cell culture technology for pharmaceutical and cell-based therapies. Taylor & Francis, New York, pp 387–416

    Google Scholar 

  17. Mehta S (2014) Automated single-use centrifugation solution for diverse biomanufacturing process. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  18. Pinheiro H, Cabral JMS (1993) Centrifugation. In: Kennedy JF, Cabral JMS (eds) Recovery processes for biological materials. Wiley, Chichester, p. 145

    Google Scholar 

  19. Riske F, Schroeder J, Belliveau J, Kang X, Kutzko J, Menon MK (2007) The use of chitosan as a flocculant in mammalian cell culture dramatically improves clarification throughput without adversely impacting monoclonal antibody recovery. J Biotechnol 128(4):813–823

    Article  CAS  PubMed  Google Scholar 

  20. Roush DJ, Lu Y (2008) Advances in primary recovery: centrifugation and membrane technology. Biotechnol Prog 24(3):488–495

    Article  CAS  PubMed  Google Scholar 

  21. Tait A, Aucamp J, Bugeon A, Hoare M (2009) Ultra scale-down prediction using microwell technology of the industrial scale clarification characteristics by centrifugation of mammalian cell broths. Biotechnol Bioeng 104(2):321–331

    Article  CAS  PubMed  Google Scholar 

  22. Titchener-Hooker N, Dunnill P, Hoare M (2008) Micro biochemical engineering to accelerate the design of industrial-scale downstream processes for biopharmaceutical proteins. Biotechnol Bioeng 100(3):473–487

    Article  CAS  PubMed  Google Scholar 

  23. Trexler-Schmidt M, Sargis S, Chiu J, Sze-Khoo S, Mun M, Kao YH, Laird MW (2010) Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Biotechnol Bioeng 106(3):452–461

    Article  CAS  PubMed  Google Scholar 

  24. Van der Meer T, Minow B, Lagrange B, Krumbein F, Rolin F (2014) Diatomaceous earth filtration; innovative single-use concepts for clarification of high-density mammalian cell cultures. BioProcess Int 12(8)

    Google Scholar 

  25. Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12:208–211

    Article  CAS  PubMed  Google Scholar 

  26. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765

    Article  CAS  PubMed  Google Scholar 

  27. Westoby M, Rogers JK, Haverstock R, Romero J, Pieracci J (2011) Modeling industrial centrifugation of mammalian cell culture using a capillary based scale-down system. Biotechnol Bioeng 108(5):989–998

    Article  CAS  PubMed  Google Scholar 

  28. Yigzaw Y, Piper R, Tran M, Shukla AA (2006) Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification. Biotechnol Prog 22:288–296

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Akeprathumachai S (2004) Murine leukemia virus clearance by flocculation and microfiltration. Biotechnol Bioeng 88:880–889

    Article  Google Scholar 

  • Castilho LR, Medronho RA (2002) Cell retention devices for suspended-cell perfusion cultures. Adv Biochem Eng Biotechnol 74:129–169

    CAS  PubMed  Google Scholar 

  • Dave P, Dizon-Maspat J, Cano T (2009) Evaluation and implementation of a single-stage multimedia harvest depth filter for a large-scale antibody process. BioProcess Int 7:S8–S17

    Google Scholar 

  • Hill P, Bender J (2007) Cell harvesting. In: Stacey G, Davis J (eds) Medicines for animal cell cultures. Wiley, Boca Raton

    Google Scholar 

  • Hove S, Cacace B, Felo M, Chefer K (2010) Development of a robust clarification process for high density mammalian cell culture processes. Recovery of Biological Products XIV, Squaw Creek, Lake Tahoe, August 1–5, 2010

    Google Scholar 

  • Jaber J, Moya W, Hamzik J, Boudif A, Zhang Y, Soice N (2011) Stimulus responsive polymers for the purification of biomolecules. US patent 0313066 A1

    Google Scholar 

  • Jayapal K (2007) Recombinant protein therapeutics from CHO cells: 20 years and counting. Chem Eng Prog 103:40–47

    CAS  Google Scholar 

  • Joseph A, Kenty B, Mollet M, Hwang K, Rose S, Goldrick S, Bender J, Farid SS, Titchener-Hooker N (2016) A scale-down mimic for mapping the process performance of centrifugation, depth and sterile filtration. Biotechnol Bioeng doi:10.1002/bit.25967

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Ng S, Lee J, Adaelu J, Qi B, Persaud K, Ludwig D, Balderes P (2012) Development of an alternative monoclonal antibody polishing step. Biopharm Int 25(5):34–45

    CAS  Google Scholar 

  • Kelley B, Blank G, Lee A (2009) Downstream processing of monoclonal antibodies: current practices and future opportunities. In: Gottschalk U (ed) Process scale purification of antibodies. Wiley, Hoboken

    Google Scholar 

  • Kilander J, Blomström S, Rasmuson A (2007) Scale-up behavior in stirred square flocculation tanks. Chem Eng Sci 62:1606–1618

    Article  CAS  Google Scholar 

  • Kim J, Akeprathumachai S, Wichramasinghe SR (2001) Flocculation to enhance microfiltration. J Membr Sci 182:161–172

    Article  CAS  Google Scholar 

  • Laukel M, Rogge P, Dudziak G (2011) Disposable downstream processing for clinical manufacturing. Current capabilities and limitations. BioProcess Int 9(5):14–21

    Google Scholar 

  • Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. mAbs 2(5):480–499

    Google Scholar 

  • Lutz H, Abbott I, Blanchard M, Parampalli A, Setiabudi G, Chiruvolu V, Noguchi M (2009) Considerations for scaling-up depth filtration of harvested cell culture fluid. BioPharm Int 22(3):1–13

    Google Scholar 

  • McNerney T, Thomas A, Senczuk A, Carvalho J, Chinniah S, Zhao X, Pallitto M, Piper R (2011) PDADMAC flocculation of CHO cells: a centrifuge-less harvest process for mAbs. 241st ACS National Meeting & Exposition, Anaheim, CA. p BIOT-302, February 2011

    Google Scholar 

  • Mullan B, Dravis B, Lim A, Clarke A, Janes S, Lambooy P, Olson D, O’Riordan T, Ricart B, Tulloch AG (2011) Disulphide bond reduction of a therapeutic monoclonal antibody during cell culture manufacturing operations. BMC Proceedings 5 (Suppl 8):110

    Google Scholar 

  • Pailhes M, Lambalot C, Barloga R (2004) Integration of centrifuges with depth filtration for optimized cell culture fluid clarification processes. BioProcessing J 3(3):55–58

    Article  Google Scholar 

  • Pegel A, Reiser S, Steurenthaler M, Klein S (2011) Evaluating disposable depth filtration platforms for mAb harvest clarification. BioProcess Int 9(9): 52–56

    CAS  Google Scholar 

  • Przybycien T, Narahari S, Steele L (2004) Alternative bioseparation operations: life beyond packed-bed chromatography. Curr Opin Biotechnol 15:469–478

    Article  CAS  PubMed  Google Scholar 

  • Rechtsteiner H (2004) Cell separation from mammalian suspension cultures. BioProcess Int 2:60–62

    Google Scholar 

  • Rios M (2012) A decade of harvesting methods. BioProcess Int 10:28–31

    Google Scholar 

  • Romero J, Chrostowski J, De Vilmorin PG, Case JY (2010) Method of isolating biomacromolecules using low pH and divalent cations. USA patent 2010/0145022 A1

    Google Scholar 

  • Sellick I (2003) Improve product recovery during cell harvesting. BioProcess Int 1:62–65

    Google Scholar 

  • Shan J, Xia J, Guo Y, Zhang X (1996) Flocculation of cell, cell debris and soluble protein with methacryloyloxyethyl trimethylammonium chloride—acrylonitrile copolymer. J Biotechnol 49:173–178

    Article  CAS  Google Scholar 

  • Shpritzer R, Vicik S, Orlando S, Acharya H, Coffman JL (2006) Calcium phosphate flocculation of antibody-producing mammalian cells at pilot scale. The 232nd ACS National Meeting; San Francisco, CA. p BIOT-80, September 10–14, 2006

    Google Scholar 

  • Shukla A, Thömmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins, Trends Biotechnol 28(5):253–261

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Kandula JR, Gottschalk U (2009) Harvest and recovery of monoclonal antibodies: cell removal and clarification. In: Gottschalk U (ed) Process scale purification of antibodies. Wiley, Hoboken

    Google Scholar 

  • Suh CW, Kim SE, Lee EK (1997) Effects of filter additives on cake filtration performance. Korean J Chem Eng 14:241–244

    Article  CAS  Google Scholar 

  • Van Reis R, Leonard LC, Hsu CC, Builder S (1991) Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration. Biotechnol Bioeng 38:413–422.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Bender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Turner, R., Joseph, A., Titchener-Hooker, N., Bender, J. (2017). Manufacturing of Proteins and Antibodies: Chapter Downstream Processing Technologies. In: Kiss, B., Gottschalk, U., Pohlscheidt, M. (eds) New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins. Advances in Biochemical Engineering/Biotechnology, vol 165. Springer, Cham. https://doi.org/10.1007/10_2016_54

Download citation

Publish with us

Policies and ethics