Skip to main content

Molecular Dynamics Simulations of Hydrogen Adsorption in Finite and Infinite Bundles ofSingle Walled Carbon Nanotubes

  • Chapter
Molecular Materials with Specific Interactions – Modeling and Design

Abstract

Molecular dynamics simulations have been used to systematically study hydrogen storage in single walled carbon nanotubes of various diameters and chiralities using a recently developed curvature-dependent force field. Several fundamental issues related to the effects of nanotube size, chirality and the thickness of nanotube bundles have been examined. A novel methodology for the analysis of effective average adsorption energy and storage capacity was developed. Our simulation results suggest strong dependence of H2 adsorption energies on the nanotube diameter but less dependence on the chirality. Substantial lattice expansion upon H2 adsorption was found. The average adsorption energy increases with the lowering of nanotube diameter (higher curvature) and decreases with higher H2 loading. The calculated H2 vibrational power spectra and radial distribution functions indicate a strong attractive interaction between H2 and nanotube walls. The calculated diffusion coefficients are much higher than what has been reported for H2 in microporous materials such as zeolites, indicating that diffusivity does not present problem for adsorption energy and effective capacity hydrogen storage in carbon nanotubes. We show that adsorption energy and effective storage capacity can be defined in a distance-dependent manner, providing a more comprehensive understanding of adsorption behavior

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  ADS  CAS  Google Scholar 

  2. Shiraishi M, Takenobu T, Ata M (2003) Gas-solid interactions in the hydrogen/single-walled carbon nanotube system. Chem. Phys. Lett. 367:633–636

    Article  CAS  Google Scholar 

  3. Liu CY, Fan Y, Lu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science 286:1127–1129

    Article  PubMed  CAS  Google Scholar 

  4. Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74:2307–2309

    Article  ADS  CAS  Google Scholar 

  5. Pace EL, Siebert AR (1959) Heat of adsorption of parahydrogen and orthodeuterium on graphon. J. Phys. Chem. 63:1398-1400

    Article  CAS  Google Scholar 

  6. Dericbourg J (1976) Adsorption de l’hydrogene sur le graphite. Surf. Sci. 59:565–574

    Article  CAS  Google Scholar 

  7. Constabaris G, Sams JR Jr., Halsey GD Jr., (1961) The interaction of H2, D2, CH4, and CD4 with graphitized carbon black. J. Phys. Chem. 65:367–369

    Article  CAS  Google Scholar 

  8. Pez G, Steyert W, (1985) U.S. Patent 4:580–404

    Google Scholar 

  9. Benard P, Chahine R (2001) Determination of the adsorption isotherms of hydrogen on activated carbons above the critical temperature of the adsorbate over wide temperature and pressure ranges. Langmuir 17:1950–1955

    Article  CAS  Google Scholar 

  10. Watanabe K, Soma M, Onishi T, Tamaru K (1971) Sorption of molecular hydrogen by potassium graphite. Nature 233:160

    ADS  CAS  Google Scholar 

  11. Watanabe K, Knodow T, Soma M, Onishi T, Tamaru K (1973) Molecular-sieve type sorption on alkali graphite intercalation compounds. Proc. Roy. Soc. Lond. A. A333:51–67

    ADS  Google Scholar 

  12. Lagrange P, Metrot A, Herold AC (1972) Physisorption of hydrogen on KC24. C. R. Acad. Sci. Ser. C275:765

    Google Scholar 

  13. Terai T, Takahashi Y (1989) Formulation of isotherms for low-temperature absorption of H2 and D2 on KC24 prepared from natural graphite. Synth. Met. 34:329–334

    Article  CAS  Google Scholar 

  14. Okamoto Y, Miyamoto Y (2001) Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphemes. J. Phys. Chem. B. 105:3470–3474

    Article  CAS  Google Scholar 

  15. Cheng H, Pez GP, Cooper AC (2001) Mechanism of hydrogen sorption in single-walled carbon nanotubes. J. Am. Chem. Soc. 123:5845–5846

    Article  PubMed  CAS  Google Scholar 

  16. Canto G, Ordejon P, Cheng H, Cooper AC, Pez GP (2003) First-principles molecular dynamics study of the stretching frequencies of hydrogen molecules in carbon nanotubes. New J. Phys. 5:124.1–8

    CAS  Google Scholar 

  17. Cheng H, Pez GP, Kern G, Kresse G, Hafner J (2001) Hydrogen adsorption in potassium-intercalated graphite of second stage: an ab initio molecular dynamics study. J. Phys. Chem. B. 105:736–742

    Article  CAS  Google Scholar 

  18. Kostov MK, Cheng H, Cooper AC, Pez GP (2002) Influence of carbon curvature on molecular adsorptions in carbon-based materials: a force field approach. Phys. Rev. Lett. 89:146105–1–146105–4

    Article  ADS  CAS  Google Scholar 

  19. Cheng H, Pez GP, Cooper AC (2003) Spontaneous cross linking of small-diameter single-walled carbon nanotubes. Nano. Lett. 3:585–587

    Article  CAS  Google Scholar 

  20. Frankland SJV, Brenner DW (2001) Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation. Chem. Phys. Lett. 334:18–23

    Article  CAS  Google Scholar 

  21. Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J. Chem. Phys. 110:577–586

    Article  ADS  CAS  Google Scholar 

  22. Williams KA, Eklund PC (2000) Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320:352–358

    Article  CAS  Google Scholar 

  23. Darkrim F, Levesque D (1998) Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J. Chem. Phys. 109:4981–4984

    Article  ADS  CAS  Google Scholar 

  24. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112:6472–6486

    Article  ADS  CAS  Google Scholar 

  25. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott S (2002) A second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Cond. Matt. 14:s783–802

    Article  ADS  Google Scholar 

  26. Brenner DW (2000) The art and science of an analytic potential. Physica Status Solidi B 217:23–40

    Article  CAS  Google Scholar 

  27. Diep P, Johnson JK (2000) An accurate H2–H2 interaction potential from first principles. J. Chem. Phys. 112:4465–4473

    Article  ADS  CAS  Google Scholar 

  28. Skoulidas AI, Sholl DS (2001) Direct tests of the darken approximation for molecular diffusion in zeolites using equilibrium molecular dynamics. J. Phys. Chem. B. 105:3151–3154

    Article  CAS  Google Scholar 

  29. Skoulidas AI, Sholl DS (2002) Transport diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in silicalite from atomistic simulations. J. Phys. Chem. B. 106:5058–5067

    Article  CAS  Google Scholar 

  30. Maginn EJ, Bell AT, Theodorou DN (1993) Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium simulations. J. Phys. Chem. 97:4173–4181

    Article  CAS  Google Scholar 

  31. Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89:185901–1–185901–4

    Article  ADS  CAS  Google Scholar 

  32. Shi W, Johnson JK (2003) Gas adsorption on heterogeneous single-walled carbon nanotube bundles. Phys. Rev. Lett. 91:015504–1–015504–4

    ADS  Google Scholar 

  33. NIST Chemistry WebBook (October 3, 2005) http://webbook.nist.gov/chemistry

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Cheng, H. et al. (2007). Molecular Dynamics Simulations of Hydrogen Adsorption in Finite and Infinite Bundles ofSingle Walled Carbon Nanotubes. In: Sokalski, W.A. (eds) Molecular Materials with Specific Interactions – Modeling and Design. Challenges and Advances in Computational Chemistry and Physics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5372-X_12

Download citation

Publish with us

Policies and ethics