Skip to main content

EPR Spectroscopic Ruler: the Method and its Applications

  • Chapter
Distance Measurements in Biological Systems by EPR

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 19))

Abstract

The distance measurement method based on Fourier deconvolution of dipolar coupling in spin-labeled EPR spectra provides a new way of examining the structure and function of biological macromolecules. In this chapter, we describe a new approach that has been developed for effective and reasonably accurate data analysis, followed by discussions of several successful applications to interesting biological problems on membrane-associated proteins. This method of EPR spectroscopic ruler has emerged as a powerful tool to investigate the functions of membrane-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P., and Steitz, T. (1999). Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature 400, 841–847.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M., and Scheller, R. (1994). A molecular description of synaptic vesicle membrane trafficking. Ann. Rev. Biochem. 63, 63–100.

    Article  PubMed  CAS  Google Scholar 

  • Berger, B., Wilson, D. B., Wolf, E., Tonchev, T., Mille, M., and Kim, P. S. (1995). Predicting coiled coils by use of pairwise residue correlations. Proc. Natl. Acad. Sci. USA 92, 8259–8263.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Broadie, K., Prokop, A., Bellen, H., O’Kane, C., Schulze, K., and Sweeney, S. (1995). Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673.

    Article  PubMed  CAS  Google Scholar 

  • Cate, J., Yusupov, M., Yusupova, G., Earnest, T., and Noller, H. (1999). X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095–2104.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, E., An, S., Barton, N., and Jahn, R. (1994). SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269, 27427–27432.

    PubMed  CAS  Google Scholar 

  • Clemons, W., May, J., Wimberly, B., McCutcheon, J., Capel, M., and Ramakrishnan, V. (1999). Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature 400, 833–840.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, T. (1983). “Proteins”, Freeman, New York, NY.

    Google Scholar 

  • Edman, K., Nollert, P., Royant, A., Belrhali, H., Pebay-Peyroula, E., Hajdu, J., Neutze, R. and Landau, E. M. (1999). High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826.

    Article  PubMed  CAS  Google Scholar 

  • Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. and Khorana, H. G. (1996). Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770.

    Article  PubMed  CAS  Google Scholar 

  • Fasshauer, D., Bruns, D., Shen, B., Jahn, R., and Briinger, A. T. (1997a). A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272, 4582–4590.

    Article  PubMed  CAS  Google Scholar 

  • Fasshauer, D., Otto, H., Eliason, W., Jahn, R., and Brünger, A. T. (1997b). Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol. Chem. 272, 28036–28041.

    Article  PubMed  CAS  Google Scholar 

  • Gerstein, M. (1998). Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census. Proteins 33, 518–534.

    Article  PubMed  CAS  Google Scholar 

  • Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. and Henderson, R. (1996). Electron crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, P., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535.

    Article  PubMed  CAS  Google Scholar 

  • Haupts, U., Tittor, J., and Oesterhelt, D. (1997) Closing in on bacteriorhodopsin: progress in understanding the molecule. Ann. Rev. Biophys. Biomol. Struct. 28, 367–399.

    Article  Google Scholar 

  • Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Südhof, T., and Nieman, H. (1994). Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061.

    Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, R., Beckmann, E. and Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J. Mol. Biol. 213, 899–929.

    Article  PubMed  CAS  Google Scholar 

  • Hubbell W. L., and Altenbach C. (1994). Investigation of structure and dynamics in membrane proteins using site-directed spin labelling. Curr. Opin. Struct. Biol. 4, 566–573.

    Article  CAS  Google Scholar 

  • Hustedt, E., and Beth, A. (1999). Nitroxide spin-spin interactions: applications to protein structure and dynamics. Ann. Rev. Biophys. Biomol. Struct. 28, 129–153.

    Article  CAS  Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995). Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669.

    Article  PubMed  CAS  Google Scholar 

  • Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature 211, 969–970.

    Article  PubMed  CAS  Google Scholar 

  • Kee, Y., Lin, R., Hsu, S., and Scheller, R. (1995). Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation. Neuron 14, 991–998.

    Article  PubMed  CAS  Google Scholar 

  • Lanyi, J. K. (1995). Bacteriorhodopsin as a model for proton pumps. Nature 375, 461–463.

    Article  PubMed  CAS  Google Scholar 

  • Lin, R., and Scheller, R. (1997). Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  • Luecke, H., Schobert, B., Richter, H.T., Cartailler, J. P. and Lanyi, J. K. (1999) Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution. Science 286, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Lupas, A. (1996). Prediction and analysis of coiled-coil structures. Methods Enzymol. 266, 513–525.

    Article  PubMed  CAS  Google Scholar 

  • Marqusee S., Robbins V., Baldwin R. (1989). Unusually stable helix formation in short alanine-based peptides. Proc. Natl. Acad. Sci. USA 86, 5286–5290.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Milligan, D. L., and Koshland, D. E. (1991). Intrasubunit signal transduction by the aspartate chemoreceptor. Science 254, 1651–1654.

    Article  PubMed  CAS  Google Scholar 

  • Nickel, W., Weber, T., McNew, J. A., Parlati, F., Sollner, T. H., and Rothman, J. E. (1999). Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl. Acad. Sci. USA 96, 12571–12576.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niemann, H., Blasi, J., and Jahn, R. (1994). Clostridial neurotoxins: New tools for dissecting exocytosis. Trends Cell Biol. 4, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Ottemann, K. M., Thorgeirsson, T., Kolodziej, A., Shin, Y.-K., and Koshland, D. E. (1998). Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR. Biochemistry 37, 7062–7069.

    Article  PubMed  CAS  Google Scholar 

  • Ottemann, K. M., Xiao, W., Shin, Y.-K., and Koshland, D. E. (1999). A piston model for transmembrane signaling of the aspartate receptor. Science 285, 1751–1754.

    Article  PubMed  CAS  Google Scholar 

  • Otto, H., Hanson, P., and Jahn, R. (1997). Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl. Acad. Sci. USA 94, 6197–6201.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Parlati, F., Weber, T., McNew, J., Westermann, B., Sollner, T., and Rothman, J. E. (1999) Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 96, 12565–12570.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pebay-Peyroula, E., Rummel, G., Rosenbusch, J., and Landau, E. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681.

    Article  PubMed  CAS  Google Scholar 

  • Perozo, E., Cortes, D. M., and Cuello, L. G. (1999). Structural rearrangements underlying K+-channel activation gating. Science 285: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, M., Hao, J., Malkus, P., Chan, C., Moore, M., King, D., and Bennett, M. (1998a) Protease resistance of syntaxin SNAP-25 VAMP complexes. J. Biol. Chem. 273, 11370–11377.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, M., Xiao, W., Macosko, J., Chan, C., Shin, Y.-K., and Bennett, M. (1998b). The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Struct. Biol. 5, 765–769.

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein, M., and Shin, Y.-K. (1995). Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92, 8239–8243.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spudich, J. L. and Lanyi, J. K. (1996). Shuttling between two protein conformations: the common mechanism for sensory transduction and ion transport. Curr. Opin. Cell. Biol. 8, 452–457.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S., Gerstein M., Oesterhelt D. and Henderson R. (1993). Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBOJ. 12, 1–8.

    Google Scholar 

  • Südhof, T. (1995). The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653.

    Article  PubMed  Google Scholar 

  • Sutton, R. B., Fasshauer, D., Jahn, R., and Brünger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395, 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Tanford, C. (1983). Translocation pathway in the catalysis of active transport. Proc. Natl. Acad. Sci. USA 80, 3701–3705.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thorgeirsson, T. E., Xiao, W., Brown, L. S., Needleman, R., Lanyi, J. K., and Shin, Y.-K. (1997). Transient channel-opening in bacteriorhodopsin: an EPR study. J. Mol. Biol. 273, 951–957.

    Article  PubMed  CAS  Google Scholar 

  • Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Vonck, J. (1996). A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: part of the F helix tilts in the M to N transition. Biochemistry 35, 5870–5878.

    Article  PubMed  CAS  Google Scholar 

  • Weber, T., Zemeiman, B., McNew, J., Westermann, B., Gmachi, M., Panarti, F., Sóliner, T., and Rothman, J. E. (1998). SNAREpins: Minimal machinery for membrane fusion. Cell 92, 759–772.

    Article  PubMed  CAS  Google Scholar 

  • Weimbs, T., Low, S., Chapin, S., Mostov, K., Bucher, P., and Hofmann, K. (1997). A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. U S A 94, 3046–3051.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weimbs, T., Mostov, K., Low, S., and Hofinan, K. (1998). A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol. 8, 260–262.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Xiao, W., Shin, YK. (2002). EPR Spectroscopic Ruler: the Method and its Applications. In: Berliner, L.J., Eaton, G.R., Eaton, S.S. (eds) Distance Measurements in Biological Systems by EPR. Biological Magnetic Resonance, vol 19. Springer, Boston, MA. https://doi.org/10.1007/0-306-47109-4_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47109-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0575-1

  • Online ISBN: 978-0-306-47109-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics