Advertisement

Knowledge Discovery in Inductive Databases

Third International Workshop, KDID 2004, Pisa, Italy, September 20, 2004, Revised Selected and Invited Papers

  • Bart Goethals
  • Arno Siebes

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3377)

Table of contents

  1. Front Matter
  2. Invited Paper

  3. Contributed Papers

    1. Cláudia Antunes, Arlindo L. Oliveira
      Pages 11-32
    2. Jérémy Besson, Céline Robardet, Jean-François Boulicaut
      Pages 33-45
    3. Nele Dexters, Toon Calders
      Pages 46-65
    4. Baptiste Jeudy, François Rioult
      Pages 89-107
    5. Taneli Mielikäinen
      Pages 130-149
    6. Taneli Mielikäinen
      Pages 150-172
    7. Arnaud Soulet, Bruno Crémilleux, François Rioult
      Pages 173-189
  4. Back Matter

About these proceedings

Keywords

Pattern Mining algorithms association rules data integration data mining data models data patterns formal concept mining inductive databases inductive generalizations knowledge discovery pattern discovery relational databases

Editors and affiliations

  • Bart Goethals
    • 1
  • Arno Siebes
    • 2
  1. 1.Mathematics and computer Science DepartmentUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Computer ScienceUniversiteit Utrecht 

Bibliographic information

  • DOI https://doi.org/10.1007/b106731
  • Copyright Information Springer-Verlag Berlin Heidelberg 2005
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Computer Science
  • Print ISBN 978-3-540-25082-1
  • Online ISBN 978-3-540-31841-5
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • Buy this book on publisher's site
Industry Sectors
Pharma
Chemical Manufacturing
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Consumer Packaged Goods
Energy, Utilities & Environment
Engineering