Zeta Functions, Topology and Quantum Physics

  • Takashi Aoki
  • Shigeru Kanemitsu
  • Mikio Nakahara
  • Yasuo Ohno

Part of the Developments in Mathematics book series (DEVM, volume 14)

Table of contents

  1. Front Matter
    Pages i-xv
  2. Krishnaswami Alladi, Alexander Berkovich
    Pages 1-17
  3. Sergey Dobrokhotov, Evgeny Semenov, Brunello Tirozzi
    Pages 31-50
  4. Michael E. Hoffman
    Pages 51-73
  5. S. Kanemitsu, A. Schinzel, Y. Tanigawa
    Pages 81-90
  6. Shigeru Kanemitsu, Yoshio Tanigawa, Haruo Tsukada, Masami Yoshimoto
    Pages 91-129
  7. Yasuo Ohno
    Pages 131-144
  8. Michel Waldschmidt
    Pages 197-219

About these proceedings

Introduction

This volume focuses on various aspects of zeta functions: multiple zeta values, Ohno’s relations, the Riemann hypothesis, L-functions, polylogarithms, and their interplay with other disciplines.

Eleven articles on recent advances are written by outstanding experts in the above-mentioned fields. Each article starts with an introductory survey leading to the exciting new research developments accomplished by the contributors.

This book will become the major standard reference on the recent advances on zeta functions.

Audience

This book, primarily intended for researchers in number theory and mathematical physics, is also accessible to graduate students in these fields.

Keywords

Identity Parity algebra equation function quantum physics topology

Editors and affiliations

  • Takashi Aoki
    • 1
  • Shigeru Kanemitsu
    • 1
  • Mikio Nakahara
    • 1
  • Yasuo Ohno
    • 1
  1. 1.Kinki UniversityJapan

Bibliographic information

  • DOI https://doi.org/10.1007/b106450
  • Copyright Information Springer Science+Business Media, Inc. 2005
  • Publisher Name Springer, Boston, MA
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-0-387-24972-8
  • Online ISBN 978-0-387-24981-0
  • Series Print ISSN 1389-2177
  • About this book
Industry Sectors
Telecommunications
Aerospace
Pharma