Geometric Aspects of Functional Analysis

Israel Seminar 2001-2002

  • Editors
  • Vitali D. Milman
  • Gideon Schechtman

Part of the Lecture Notes in Mathematics book series (LNM, volume 1807)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. F. Barthe, M. Csörnyei, A. Naor
    Pages 1-19
  3. Alexander Barvinok
    Pages 20-26
  4. S. G. Bobkov, A. Koldobsky
    Pages 44-52
  5. E. D. Gluskin
    Pages 122-130
  6. E. Gluskin, V. Milman
    Pages 131-135
  7. Olivier Guédon, Artem Zvavitch
    Pages 136-147
  8. Vitali Milman, Roy Wagner
    Pages 158-168
  9. G. Schechtman, N. Tomczak-Jaegermann, R. Vershynin
    Pages 223-240
  10. Carsten Schütt, Elisabeth Werner
    Pages 241-422

About this book

Introduction

The proceedings of the Israeli GAFA seminar on Geometric Aspect of Functional Analysis during the years 2001-2002 follow the long tradition of the previous volumes. They continue to reflect the general trends of the Theory. Several papers deal with the slicing problem and its relatives. Some deal with the concentration phenomenon and related topics. In many of the papers there is a deep interplay between Probability and Convexity. The volume contains also a profound study on approximating convex sets by randomly chosen polytopes and its relation to floating bodies, an important subject in Classical Convexity Theory. All the papers of this collection are original research papers.

Keywords

Asymptotic geometric Analysis Convexity Distribution Local theory of Banach spaces Maxima Random variable functional analysis

Bibliographic information

  • DOI https://doi.org/10.1007/b10415
  • Copyright Information Springer-Verlag Berlin Heidelberg 2003
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-00485-1
  • Online ISBN 978-3-540-36428-3
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book
Industry Sectors
Engineering
Telecommunications
Aerospace