Functional Analysis

Proceedings of the Seminar at the University of Texas at Austin, 1986–87

  • Edward W. OdellJr.
  • Haskell P. Rosenthal
Conference proceedings

Part of the Lecture Notes in Mathematics book series (LNM, volume 1332)

Table of contents

  1. Front Matter
    Pages i-v
  2. Haskell Rosenthal
    Pages 1-32
  3. S. Argyros, E. Odell, H. Rosenthal
    Pages 80-111
  4. Dale E. Alspach
    Pages 112-125
  5. D. Alspach, E. Odell
    Pages 126-144
  6. Carol S. Schumacher
    Pages 150-155
  7. Haskell Rosenthal
    Pages 156-174
  8. S. J. Dilworth, T. J. Ransford
    Pages 175-178
  9. R. A. DeVore, H. Kierstead, G. G. Lorentz
    Pages 195-202
  10. Back Matter
    Pages 203-207

About these proceedings

Introduction

The articles in this volume are based on talks given in a seminar at Austin during 1986-87. They range from those dealing with fresh research and discoveries to exposition and new proofs of older results. The main topics and themes include geometric and analytic properties of infinite-dimensional Banach spaces and their convex subsets as well as some aspects of Banach spaces associated with harmonic analysis and Banach algebras.

Keywords

Convexity Hilbert space calculus differential equation functional analysis

Editors and affiliations

  • Edward W. OdellJr.
    • 1
  • Haskell P. Rosenthal
    • 1
  1. 1.Department of MathematicsThe University of Texas at AustinAustinUSA

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0081607
  • Copyright Information Springer-Verlag Berlin Heidelberg 1988
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-50018-6
  • Online ISBN 978-3-540-45892-0
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book
Industry Sectors
Pharma
Finance, Business & Banking
Electronics
Aerospace
Oil, Gas & Geosciences