Advertisement

Existence Families, Functional Calculi and Evolution Equations

  • Authors
  • Ralph¬†deLaubenfels

Part of the Lecture Notes in Mathematics book series (LNM, volume 1570)

Table of contents

  1. Front Matter
    Pages I-XV
  2. Ralph deLaubenfels
    Pages 1-6
  3. Ralph deLaubenfels
    Pages 7-12
  4. Ralph deLaubenfels
    Pages 13-23
  5. Ralph deLaubenfels
    Pages 38-54
  6. Ralph deLaubenfels
    Pages 60-65
  7. Ralph deLaubenfels
    Pages 66-70
  8. Ralph deLaubenfels
    Pages 71-72
  9. Ralph deLaubenfels
    Pages 73-75
  10. Ralph deLaubenfels
    Pages 76-78
  11. Ralph deLaubenfels
    Pages 94-96
  12. Ralph deLaubenfels
    Pages 97-103
  13. Ralph deLaubenfels
    Pages 104-109
  14. Ralph deLaubenfels
    Pages 110-112
  15. Ralph deLaubenfels
    Pages 113-124
  16. Ralph deLaubenfels
    Pages 125-127
  17. Ralph deLaubenfels
    Pages 128-132
  18. Ralph deLaubenfels
    Pages 158-163
  19. Ralph deLaubenfels
    Pages 164-174
  20. Ralph deLaubenfels
    Pages 175-177
  21. Ralph deLaubenfels
    Pages 178-182
  22. Ralph deLaubenfels
    Pages 183-186
  23. Ralph deLaubenfels
    Pages 187-190
  24. Ralph deLaubenfels
    Pages 196-200
  25. Back Matter
    Pages 201-240

About this book

Introduction

This book presents an operator-theoretic approach to ill-posed evolution equations. It presents the basic theory, and the more surprising examples, of generalizations of strongly continuous semigroups known as 'existent families' and 'regularized semigroups'. These families of operators may be used either to produce all initial data for which a solution in the original space exists, or to construct a maximal subspace on which the problem is well-posed. Regularized semigroups are also used to construct functional, or operational, calculi for unbounded operators. The book takes an intuitive and constructive approach by emphasizing the interaction between functional calculus constructions and evolution equations. One thinks of a semigroup generated by A as etA and thinks of a regularized semigroup generated by A as etA g(A), producing solutions of the abstract Cauchy problem for initial data in the image of g(A). Material that is scattered throughout numerous papers is brought together and presented in a fresh, organized way, together with a great deal of new material.

Keywords

Semigroups of operators abstract Cauchy problem calculus evolution equations functional calculus maximum

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0073401
  • Copyright Information Springer-Verlag Berlin Heidelberg 1994
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-57703-4
  • Online ISBN 978-3-540-48322-9
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site
Industry Sectors
Pharma
Finance, Business & Banking
Electronics
Aerospace
Oil, Gas & Geosciences