Skip to main content

Ring Resonator Systems to Perform Optical Communication Enhancement Using Soliton

  • Book
  • © 2015

Overview

Part of the book series: SpringerBriefs in Applied Sciences and Technology (BRIEFSAPPLSCIENCES)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators.
The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra
short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in
multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and
integrated rings system, easy to control, flexibility, less loss, application in long distance communication and many other advantages.
Using these pulses overcome the problems such as losses during the propagation, long distances, error detection, using many repeaters or
amplifiers, undetectable received signals, pulse broadening, overlapping and so on. This book show how to generate soliton pulses using
ring resonators in the micro and nano range which can be used in optical communication to improve the transmission technique and quality
of received signals in networks such as WiFi and wireless communication.

Authors and Affiliations

  • Photonics Research Centre, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia

    Iraj Sadegh Amiri

  • University Technology Malaysia, Skudai, Malaysia

    Abdolkarim Afroozeh

About the authors

Dr. I. S. Amiri, received his PhD degree in Nanophotonics from University Technology Malaysia (UTM). He has several publications in the area of Optical Soliton Communications, Nanophotonics, Nonlinear fiber optics, Quantum Cryptography, Optical Tweezers, Nanotechnology, Biomedical Physics and Biotechnology Engineering. He is currently a visiting research fellow in UTM.

 Dr. A. Afroozeh, received his PhD in photonics from Universiti Teknologi Malaysia (UTM) in 2014. His areas of interests are in microring resonators, optical solitons, fiber couplers, and nanowaveguides.

Bibliographic Information

Publish with us