Skip to main content
Book cover

Electromagnetic Form Factors of Charmed Baryons in Lattice QCD

  • Book
  • © 2018

Overview

  • Nominated as an outstanding Ph.D. thesis by the Tokyo Institute of Technology
  • Offers clear descriptions of the underlying ideas, formalism, and results
  • Includes a concise review of quantum chromodynamics and its lattice formulation
  • Describes an effective numerical method for calculating lattice quantum chromodynamics

Part of the book series: Springer Theses (Springer Theses)

  • 1522 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

  1. Introductory Review

  2. Formalism and Results

  3. Concluding Remarks

Keywords

About this book

This thesis presents the first lattice quantum chromodynamics (QCD) approach to the charmed baryon regime, building on the knowledge and experience gained with former lattice QCD applications to nucleon structure. The thesis provides valuable insights into the dynamics of yet unobserved charmed baryon systems. Most notably, it confirms that the expectations of model or effective field theoretical calculations of heavy-hadron systems hold qualitatively, while also demonstrating that they conflict with the quantitative results, pointing to a tension between these complementary approaches.

Further, the book presents a cutting-edge approach to understanding the structure and dynamics of hadrons made of quarks and gluons using QCD, and successfully extends the approach to charmed hadrons. In particular, the thesis investigate a peculiar property of charmed hadrons whose dynamics, i.e., structure, deviates from their counterparts, e.g., those of protons and neutrons, by employing the lattice QCD approach —a state-of-the-art numerical method and the powerful ab initio, non-perturbative method.

Authors and Affiliations

  • Strangeness Nuclear Physics Laboratory, Nishina Center, RIKEN, Wako, Japan

    Kadir Utku Can

About the author

Kadir Utku Can is a postdoctoral researcher at RIKEN. He received his Bachelor and Master of Science degree in Physics from Middle East Technical University, Turkey in 2010 and 2012, respectively. From 2011 to 2013, he served as a research assistant for a project investigating the hadron structure via lattice QCD, conducted at Ozyegin University, Turkey. After that, he pursued his Ph.D. studies at Tokyo Institute of Technology, being awarded a MEXT Scholarship from the Japanese Government in 2014, and received his Ph.D. from Tokyo Institute of Technology, Japan in 2017. His works chiefly focusses on low-energy QCD phenomena and related subjects.

Bibliographic Information

Publish with us