Clifford Analysis and Its Applications

  • F. Brackx
  • J. S. R. Chisholm
  • V. Souček

Part of the NATO Science Series book series (NAII, volume 25)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Swanhild Bernstein
    Pages 1-8
  3. Fred Brackx, Frank Sommen
    Pages 9-26
  4. Jarolím Bureš
    Pages 39-48
  5. Bernard Jancewicz
    Pages 91-102
  6. Gerald Kaiser
    Pages 113-121
  7. Georg Khimshiashvili
    Pages 123-133
  8. Viktor Kravchenko, Vladislav Kravchenko, Benjamin Williams
    Pages 143-154
  9. A. Krzysztof Kwaśniewski
    Pages 163-171
  10. Valeri Labunets, Ekaterina Labunets-Rundblad, Jaakko Astola
    Pages 173-182
  11. Andreas Axelsson, René Grognaxd, Jeff Hogan, Alan McIntosh
    Pages 231-246
  12. Irene Sabadini, Frank C Sommen
    Pages 267-282
  13. Helmut Schaeben, Wolfgang Sprößig, Gerald van den Boogaart
    Pages 283-291
  14. Petr Somberg
    Pages 293-301
  15. Vladimír Souček
    Pages 323-339
  16. Wolfgang Sprößig
    Pages 341-360
  17. Irene Sabadini, Frank C Sommen
    Pages 361-376
  18. Andrzej Trautman
    Pages 377-388
  19. Peter Van Lancker
    Pages 389-398
  20. Nikolai Vasilevski
    Pages 399-409
  21. Back Matter
    Pages 411-416

About this book


In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research.
Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.


Boundary value problem Singular integral harmonic analysis linear optimization manifold symplectic geometry

Editors and affiliations

  • F. Brackx
    • 1
  • J. S. R. Chisholm
    • 2
  • V. Souček
    • 3
  1. 1.Department of Mathematical AnalysisGhent UniversityGhentBelgium
  2. 2.Institute of Mathematics and StatisticsUniversity of KentCanterburyUK
  3. 3.Mathematical InstituteCharles UniversityPragueCzech Republic

Bibliographic information

  • DOI
  • Copyright Information Kluwer Academic Publishers 2001
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-0-7923-7045-1
  • Online ISBN 978-94-010-0862-4
  • Series Print ISSN 1568-2609
  • Buy this book on publisher's site
Industry Sectors
Oil, Gas & Geosciences