Advertisement

IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow

Proceedings of the IUTAM Symposium held in Princeton, NJ, U.S.A., 11–13 September 2002

  • Alexander J. Smits

Part of the Fluid Mechanics and its Applications book series (FMIA, volume 74)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Matthias H. Buschmann, Mohamed Gad-el-Hak
    Pages 5-10
  3. Osami Kitoh, Koichi Nakabayashi
    Pages 33-36
  4. Ulf Högström, J. C. R. Hunt, Ann-Sofi Smedman
    Pages 53-58
  5. Scott C. Morris, John Foss
    Pages 65-70
  6. Stephen M. de Bruyn Kops, James J. Riley, Kraig B. Winters
    Pages 71-76
  7. Ann-Sofi Smedman, Ulf Högström, J. C. R. Hunt
    Pages 89-92
  8. Russell J. Donnelly
    Pages 93-100
  9. P. A. Priyadarshana, J. C. Klewicki
    Pages 117-122
  10. Sunghwan Jung, Brian D. Storey, Julien Aubert, Harry L. Swinney
    Pages 137-140
  11. Kumar Bobba, John Doyle, Mory Gharib
    Pages 145-149
  12. Yukio Kaneda, Takashi Ishihara, Mitsuo Yokokawa, Ken'ichi Itakura, Atsuya Uno
    Pages 155-162
  13. P. K. Yeung, Shuyi Xu, M. S. Borgas, B. L. Sawford
    Pages 163-168
  14. R. D. Moser, P. Zandonade
    Pages 169-174
  15. Tohru Nakano, Toshiyuki Gotoh
    Pages 181-186
  16. Raul Bayoan Cal, Luciano Castillo
    Pages 195-199
  17. L. Biferale, I. Daumont, A. Lanotte, F. Toschi
    Pages 201-206
  18. Emmanuel Villermaux
    Pages 215-222
  19. William K. George, Honglu Wang
    Pages 223-228
  20. B. R. Pearson, P. -Å. Krogstad, G. R. Johnson
    Pages 229-236
  21. J. Cleve, M. Greiner
    Pages 245-248
  22. Bruno Eckhardt, Arne Jachens, Jörg Schumacher
    Pages 253-256
  23. B. J. McKeon, J. F. Morrison, W. Jiang, J. Li, A. J. Smits
    Pages 265-270
  24. M. B. Jones, N. Nishizawa, M. S. Chong, I. Marusic
    Pages 271-277

About these proceedings

Introduction

This volume presents selected papers from the IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, convened in Princeton, NJ, USA, September I1-13, 2002. The behavior ofturbulence at high Reynolds number is interesting from a fundamental point of view, in that most theories of turbulence make very specific predictions in the limit of infinite Reynolds number. From a more practical point of view, there exist many applications that involve turbulent flow where the Reynolds numbers are extremely large. For example, large vehicles such as submarines and commercial transports operate at Reynolds 9 numbers based on length ofthe order oft0 , and industrial pipe flows cover a 7 very wide range of Reynolds numbers up to 10 • Many very important applications of high Reynolds number flow pertain to atmospheric and other geophysical flows where extremely high Reynolds numbers are the rule rather than the exception, and the understanding of climate changes and the prediction of destructive weather effects hinges to some extent on our appreciation ofhigh-Reynolds number turbulence behavior. The important effects of Reynolds number on turbulence has received a great deal of recent attention. The objective of the Symposium was to bring together many of the world's experts in this area to appraise the new experimental results, discuss new scaling laws and turbulence models, and to enhance our mutual understanding of turbulence.

Keywords

Dissipation Phase Profil Scale convection mixing turbulence turbulent flow wave

Editors and affiliations

  • Alexander J. Smits
    • 1
  1. 1.Princeton UniversityPrincetonUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-94-007-0997-3
  • Copyright Information Kluwer Academic Publishers 2004
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-94-010-3763-1
  • Online ISBN 978-94-007-0997-3
  • Series Print ISSN 0926-5112
  • Buy this book on publisher's site
Industry Sectors
Pharma
Materials & Steel
Automotive
Chemical Manufacturing
Biotechnology
Electronics
Consumer Packaged Goods
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences
Engineering