Skip to main content
Book cover

Smart AD and DA Conversion

  • Book
  • © 2010

Overview

  • The feasibility of relevant smart AD and DA converter concepts to improve their performance is investigated. For both AD and DA converters, the following aspects are taken into account:
  • Selection of relevant smart concepts to improve the performance
  • Development and analysis of the selected smart concepts, including methods for detection, processing and correction
  • Implementation and evaluation of the selected smart concepts
  • Includes supplementary material: sn.pub/extras

Part of the book series: Analog Circuits and Signal Processing (ACSP)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

The history of the application of semiconductors for controlling currents goes back all the way to 1926, in which Julius Lilienfeld led a patent for a “Method and apparatus for controlling electric currents” [1], which is considered the rst work on metal/semiconductor eld-effect transistors. More well-known is the work of William Shockley, John Bardeen and Walter Brattain in the 1940s [2, 3], after which the development of semiconductor devices commenced. In 1958, independent work from Jack Kilby and Robert Noyce ledto the invention of integrated circuits. A few milestones in IC design are the rst monolithic operational ampli er in 1963 (Fairchild?A702, Bob Widlar) and the rst o- chip 4-bit microprocessor in 1971 (Intel 4004). Ever since the start of the semiconductor history, integration plays an imp- tant role: starting from single devices, ICs with basic functions were developed (e. g. opamps, logic gates), followed by ICs that integrate larger parts of a s- tem (e. g. microprocessors, radio tuners, audio ampli ers). Following this trend of system integration, this eventually leads to the integration of analog and d- ital components in one chip, resulting in mixed-signal ICs: digital components are required because signal processing is preferably done in the digital - main; analog components are required because physical signals are analog by nature. Mixed-signal ICs are already widespread in many applications (e. g. - dio, video); for the future, it is expected that this trend will continue, leading to a larger scale of integration.

Authors and Affiliations

  • , Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands

    Arthur van Roermund

  • , Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands

    Hans Hegt

  • Holst Centre - IMEC, Eindhoven, Netherlands

    Pieter Harpe

Bibliographic Information

Publish with us