Computational Intelligence in Data Mining - Volume 2

Proceedings of the International Conference on CIDM, 20-21 December 2014

  • Lakhmi C. Jain
  • Himansu Sekhar Behera
  • Jyotsna Kumar Mandal
  • Durga Prasad Mohapatra

Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 32)

Table of contents

  1. Front Matter
    Pages i-xxviii
  2. Veeralakshmi Ponnuramu, Latha Tamilselvan
    Pages 27-37
  3. J. Amudha, Hitha Nandakumar, S. Madhura, M. Parinitha Reddy, Nagabhairava Kavitha
    Pages 49-58
  4. Teja C. Kundaikar, J. A. Laxminarayana
    Pages 81-88
  5. P. M. K. Prasad, M. N. V. S. S. Kumar, G. Sasi Bhushana Rao
    Pages 99-110
  6. D. Narendra Kumar, Halini Samalla, Ch. Jaganmohana Rao, Y. Swamy Naidu, K. Alfoni Jose, B. Manmadha Kumar
    Pages 123-131
  7. Janmenjoy Nayak, Bighnaraj Naik, H. S. Behera
    Pages 133-149
  8. M. K. Sahoo, Janmenjoy Nayak, S. Mohapatra, B. K. Nayak, H. S. Behera
    Pages 151-164
  9. Elizabeth Shanthi, D. Sangeetha
    Pages 165-173
  10. Nimmy Cleetus, K. A. Dhanya
    Pages 175-185
  11. Sarojrani Pattnaik, Sutar Mihir Kumar
    Pages 201-208

About these proceedings


The contributed volume aims to explicate and address the difficulties and challenges that of seamless integration of the two core disciplines of computer science, i.e., computational intelligence and data mining. Data Mining aims at the automatic discovery of underlying non-trivial knowledge from datasets by applying intelligent analysis techniques. The interest in this research area has experienced a considerable growth in the last years due to two key factors: (a) knowledge hidden in organizations’ databases can be exploited to improve strategic and managerial decision-making; (b) the large volume of data managed by organizations makes it impossible to carry out a manual analysis. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.


Advance Computing Methods Big Data Analysis CIDM CIDM 2014 CIDM 2014 Proceedings CIDM Proceedings Computational Intelligence Data Mining Fuzzy Logic Systems Machine Learning

Editors and affiliations

  • Lakhmi C. Jain
    • 1
  • Himansu Sekhar Behera
    • 2
  • Jyotsna Kumar Mandal
    • 3
  • Durga Prasad Mohapatra
    • 4
  1. 1.University of Canberra, Canberra, Australia and University of South AustraliaAdelaideAustralia
  2. 2.Department of Computer Science and EngineeringVeer Surendra Sai University of TechnologySambalpurIndia
  3. 3.Computer Science & EngineeringKalyani UniversityNadiaIndia
  4. 4.Dept. of Computer Science and EngineeringNational Institute of Technology RourkelaRourkelaIndia

Bibliographic information

  • DOI
  • Copyright Information Springer India 2015
  • Publisher Name Springer, New Delhi
  • eBook Packages Engineering
  • Print ISBN 978-81-322-2207-1
  • Online ISBN 978-81-322-2208-8
  • Series Print ISSN 2190-3018
  • Series Online ISSN 2190-3026
  • About this book
Industry Sectors
Chemical Manufacturing
Energy, Utilities & Environment
Oil, Gas & Geosciences