Wavelet Analysis and Applications

  • Qian Tao 
  • Vai Mang I 
  • Xu Yuesheng 

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Wavelet Theory

    1. Front Matter
      Pages 1-1
    2. Approximation and Fourier Analysis

    3. Construction of Wavelets and Frame Theory

      1. Huai-Xin Cao, Bao-Min Yu
        Pages 59-66
      2. Chun-Yan Li, Huai-Xin Cao
        Pages 67-82
      3. Gang Wang, ZhengXing Cheng
        Pages 83-90
      4. Jianwei Yang, Yuan Yan Tang, Zhengxing Cheng, Xinge You
        Pages 91-98
      5. Xiaoxia Feng, Zhengxing Cheng, Zhongpeng Yang
        Pages 99-106
      6. Ying Li, Zhi-Dong Deng, Yan-Chun Liang
        Pages 107-121
      7. Zhen Yao, Nasir Rajpoot, Roland Wilson
        Pages 123-142
      8. David R. Larson
        Pages 143-171
      9. Paula Cerejeiras, Milton Ferreira, Uwe Kähler
        Pages 173-184
    4. Fractal and Multifractal Theory, Wavelet Algorithm, Wavelet in Numerical Analysis

      1. Stéphane Jaffard, Bruno Lashermes, Patrice Abry
        Pages 201-246

About these proceedings


This volume reflects the latest developments in the area of wavelet analysis and its applications. Since the cornerstone lecture of Yves Meyer presented at the ICM 1990 in Kyoto, to some extent, wavelet analysis has often been said to be mainly an applied area. However, a significant percentage of contributions now are connected to theoretical mathematical areas, and the concept of wavelets continuously stretches across various disciplines of mathematics.

Key topics:

  • Approximation and Fourier Analysis
  • Construction of Wavelets and Frame Theory
  • Fractal and Multifractal Theory
  • Wavelets in Numerical Analysis
  • Time-Frequency Analysis
  • Adaptive Representation of Nonlinear and Non-stationary Signals
  • Applications, particularly in image processing

Through the broad spectrum, ranging from pure and applied mathematics to real applications, the book will be most useful for researchers, engineers and developers alike


Approximation Fourier transform Haar wavelet Hilbert space algorithms harmonic analysis numerical analysis wavelets

Editors and affiliations

  • Qian Tao 
    • 1
  • Vai Mang I 
    • 1
  • Xu Yuesheng 
    • 2
  1. 1.Faculty of Science and TechnologyUniversity of MacauMacau
  2. 2.Department of MathematicsSyracuse UniversitySyracuseUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-7643-7778-6
  • Copyright Information Birkhäuser Verlag 2007
  • Publisher Name Birkhäuser Basel
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-7643-7777-9
  • Online ISBN 978-3-7643-7778-6
  • About this book