Advertisement

Feature Selection for Data and Pattern Recognition

  • Urszula Stańczyk
  • Lakhmi C. Jain

Part of the Studies in Computational Intelligence book series (SCI, volume 584)

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Urszula Stańczyk, Lakhmi C. Jain
    Pages 1-7
  3. Estimation of Feature Importance

    1. Front Matter
      Pages 9-9
    2. Witold R. Rudnicki, Mariusz Wrzesień, Wiesław Paja
      Pages 11-28
    3. Urszula Stańczyk
      Pages 71-90
  4. Rough Set Approach to Attribute Reduction

    1. Front Matter
      Pages 91-91
    2. Yoshifumi Kusunoki, Masahiro Inuiguchi
      Pages 113-160
  5. Rule Discovery and Evaluation

    1. Front Matter
      Pages 161-161
    2. Hakim Touati, Zbigniew W. Raś, James Studnicki
      Pages 177-197
  6. Data- and Domain-Oriented Methodologies

    1. Front Matter
      Pages 229-229
    2. Nenad Tomašev, Krisztian Buza, Kristóf Marussy, Piroska B. Kis
      Pages 231-262
    3. Piotr Dalka, Damian Ellwart, Grzegorz Szwoch, Karol Lisowski, Piotr Szczuko, Andrzej Czyżewski
      Pages 263-303
  7. Back Matter
    Pages 351-355

About this book

Introduction

This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition.

Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks.

This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.

Keywords

Computational Intelligence Data Recognition Feature Selection Intelligent Systems Pattern Recognition

Editors and affiliations

  • Urszula Stańczyk
    • 1
  • Lakhmi C. Jain
    • 2
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Mawson Lakes CampusFaculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia, and University of South AustraliaAdelaideAustralia

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-45620-0
  • Copyright Information Springer-Verlag Berlin Heidelberg 2015
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Engineering
  • Print ISBN 978-3-662-45619-4
  • Online ISBN 978-3-662-45620-0
  • Series Print ISSN 1860-949X
  • Series Online ISSN 1860-9503
  • Buy this book on publisher's site
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences
Engineering