Advertisement

Vektorbündel

Vom Möbius-Bündel bis zum J-Homomorphismus

  • Karlheinz Knapp

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Karlheinz Knapp
    Pages 1-50
  3. Karlheinz Knapp
    Pages 51-150
  4. Karlheinz Knapp
    Pages 151-254
  5. Karlheinz Knapp
    Pages 255-305
  6. Karlheinz Knapp
    Pages 307-350
  7. Karlheinz Knapp
    Pages 351-408
  8. Karlheinz Knapp
    Pages 409-456
  9. Karlheinz Knapp
    Pages 457-516
  10. Karlheinz Knapp
    Pages 517-579
  11. Back Matter
    Pages 580-595

About this book

Introduction

Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte.

Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen oder anwenden möchten.​

Der Inhalt:

Grundlagen - Stabilisierungssequenz und charakteristische Klassen - Vektorbündel und stabile Homotopie

Die Zielgruppen:

Studierende der Mathematik ab 5. Semester des Bachelorstudiums und im Masterstudium

Mathematiker/innen an Universitäten   

Der Autor:

Prof. Dr. Karlheinz Knapp, Promotion und Habilitation an der Universität Bonn, seit 1979 Hochschullehrer an der Universität Wuppertal, lehrt und forscht seit vielen Jahren in der Mathematik mit Schwerpunkt Topologie.

Keywords

Algebraische Topologie Homotopietheorie K-Theorie charakteristische Klassen

Authors and affiliations

  • Karlheinz Knapp
    • 1
  1. 1.FB C, Fachgruppe MathematikBergische Universität WuppertalWuppertalGermany

Bibliographic information