Skip to main content
  • Book
  • © 1973

Approximate Stochastic Behavior of n-Server Service Systems with Large n

Authors:

Part of the book series: Lecture Notes in Economics and Mathematical Systems (LNE, volume 87)

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (4 chapters)

  1. Front Matter

    Pages I-VII
  2. General Formulation

    • Gordon F. Newell
    Pages 1-23
  3. Approximation Methods

    • Gordon F. Newell
    Pages 24-56
  4. Approximations for Short Service Times

    • Gordon F. Newell
    Pages 57-85
  5. Equilibrium Distributions

    • Gordon F. Newell
    Pages 86-117
  6. Back Matter

    Pages 118-120

About this book

For many stochastic service systems, service capacities large enough to serve some given customer demand is achieved simply by providing multiple servers of low capacity; for example, toll plazas have many toll collectors, banks have many t- lers, bus lines have many buses, etc. If queueing exists and the typical queue size is large compared with the number n of servers, all servers are kept busy most of the time and the service behaves like some "effective" single server wit:l mean se.- vice time lin times that of an actual server. The behavior of the queueing system can be described, at least approximately, by use of known results from the much studied single-channel queueing system. For nยป 1 , however, (we are thinking p- ticularlyof cases in which n ~ 10), the system may be rather congested and quite sensitive to variations in demand even when the average queue is small compared with n. The behavior of such a system will, generally, differ quite significantly from any "equivalent" single-server system. The following study deals with what, in the customary classification of queueing systems, is called the G/G/n system; n servers in parallel with independent s- vice times serving a fairly general type of customer arrival process. rhe arrival rate of customers may be time-dependent; particular attention is given to time - pendence typical of a "rush hour" in which the arrival rate has a single maximum possibly exceeding the capacity of the service.

Authors and Affiliations

  • Institute of Transportation and Traffic Engineering, University of California, Berkeley, USA

    Gordon F. Newell

Bibliographic Information

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access