Abstract Harmonic Analysis

Volume II Structure and Analysis for Compact Groups Analysis on Locally Compact Abelian Groups

  • Edwin Hewitt
  • Kenneth A. Ross

Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 152)

Table of contents

  1. Front Matter
    Pages III-IX
  2. Edwin Hewitt, Kenneth A. Ross
    Pages 1-208
  3. Edwin Hewitt, Kenneth A. Ross
    Pages 209-327
  4. Edwin Hewitt, Kenneth A. Ross
    Pages 328-483
  5. Edwin Hewitt, Kenneth A. Ross
    Pages 484-605
  6. Edwin Hewitt, Kenneth A. Ross
    Pages 606-679
  7. Back Matter
    Pages 681-771

About this book

Introduction

This book is a continuation of vol. I (Grundlehren vol. 115, also available in softcover), and contains a detailed treatment of some important parts of harmonic analysis on compact and locally compact abelian groups. From the reviews: "This work aims at giving a monographic presentation of abstract harmonic analysis, far more complete and comprehensive than any book already existing on the subject...in connection with every problem treated the book offers a many-sided outlook and leads up to most modern developments. Carefull attention is also given to the history of the subject, and there is an extensive bibliography...the reviewer believes that for many years to come this will remain the classical presentation of abstract harmonic analysis." Publicationes Mathematicae

Keywords

Abelian group Analysis Mathematica Outlook abstract harmonic analysis boundary element method development eXist harmonic analysis history of mathematics presentation review story

Authors and affiliations

  • Edwin Hewitt
    • 1
  • Kenneth A. Ross
    • 2
  1. 1.Department of Mathematic GN-50University of WashingtonSeattleUSA
  2. 2.Department of MathematicsUniversity of OregonEugeneUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-62008-9
  • Copyright Information Springer-Verlag Berlin Heidelberg 1970
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-58318-9
  • Online ISBN 978-3-642-62008-9
  • Series Print ISSN 0072-7830
  • Series Online ISSN 2196-9701
  • About this book