Advertisement

Case-Based Reasoning

A Textbook

  • Michael M. Richter
  • Rosina O. Weber

Table of contents

  1. Front Matter
    Pages I-XVIII
  2. Basics

    1. Front Matter
      Pages 1-2
    2. Michael M. Richter, Rosina O. Weber
      Pages 3-16
    3. Michael M. Richter, Rosina O. Weber
      Pages 17-40
    4. Michael M. Richter, Rosina O. Weber
      Pages 41-52
    5. Michael M. Richter, Rosina O. Weber
      Pages 53-84
  3. Core Methods

    1. Front Matter
      Pages 85-86
    2. Michael M. Richter, Rosina O. Weber
      Pages 87-111
    3. Michael M. Richter, Rosina O. Weber
      Pages 113-147
    4. Michael M. Richter, Rosina O. Weber
      Pages 149-165
    5. Michael M. Richter, Rosina O. Weber
      Pages 167-187
    6. Michael M. Richter, Rosina O. Weber
      Pages 189-220
    7. Michael M. Richter, Rosina O. Weber
      Pages 221-246
    8. Michael M. Richter, Rosina O. Weber
      Pages 247-273
  4. Advanced Elements

    1. Front Matter
      Pages 275-275
    2. Michael M. Richter, Rosina O. Weber
      Pages 277-298
    3. Michael M. Richter, Rosina O. Weber
      Pages 299-319
    4. Michael M. Richter, Rosina O. Weber
      Pages 321-338
    5. Michael M. Richter, Rosina O. Weber
      Pages 339-355
    6. Michael M. Richter, Rosina O. Weber
      Pages 357-372
  5. Complex Knowledge Sources

    1. Front Matter
      Pages 373-374
    2. Michael M. Richter, Rosina O. Weber
      Pages 375-409
    3. Michael M. Richter, Rosina O. Weber
      Pages 411-442
    4. Michael M. Richter, Rosina O. Weber
      Pages 443-463
    5. Michael M. Richter, Rosina O. Weber
      Pages 465-485
    6. Michael M. Richter, Rosina O. Weber
      Pages 487-505
  6. Additions

    1. Front Matter
      Pages 507-507
    2. Michael M. Richter, Rosina O. Weber
      Pages 509-521
    3. Michael M. Richter, Rosina O. Weber
      Pages 523-538
  7. Back Matter
    Pages 539-546

About this book

Introduction

While it is relatively easy to record billions of experiences in a database, the wisdom of a system is not measured by the number of its experiences but rather by its ability to make use of them. Case-based rea­soning (CBR) can be viewed as experience mining, with analogical reasoning applied to problem–solution pairs. As cases are typically not identical, simple storage and recall of experiences is not sufficient, we must define and analyze similarity and adaptation. The fundamentals of the approach are now well-established, and there are many successful commercial applications in diverse fields, attracting interest from researchers across various disciplines.

 

This textbook presents case-based reasoning in a systematic approach with two goals: to present rigorous and formally valid structures for precise reasoning, and to demonstrate the range of techniques, methods, and tools available for many applications. In the chapters in Part I the authors present the basic elements of CBR without assuming prior reader knowledge; Part II explains the core methods, in particu­lar case representations, similarity topics, retrieval, adaptation, evaluation, revisions, learning, develop­ment, and maintenance; Part III offers advanced views of these topics, additionally covering uncertainty and probabilities; and Part IV shows the range of knowledge sources, with chapters on textual CBR, im­ages, sensor data and speech, conversational CBR, and knowledge management. The book concludes with appendices that offer short descriptions of the basic formal definitions and methods, and comparisons be­tween CBR and other techniques.

 

The authors draw on years of teaching and training experience in academic and business environments, and they employ chapter summaries, background notes, and exercises throughout the book. It's suitable for advanced undergraduate and graduate students of computer science, management, and related disciplines, and it's also a practical introduction and guide for industrial researchers and practitioners engaged with knowledge engineering systems.

Keywords

Artificial intelligence Case-based reasoning (CBR) Complex knowledge Information retrieval Knowledge representation Knowledge-based systems Machine learning Reasoning Similarity

Authors and affiliations

  • Michael M. Richter
    • 1
  • Rosina O. Weber
    • 2
  1. 1.Fachbereich Informatik, AG Künstliche IntelligenzTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.The College of Computing & InformaticsDrexel UniversityPhildalphiaUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-40167-1
  • Copyright Information Springer-Verlag Berlin Heidelberg 2013
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Computer Science
  • Print ISBN 978-3-642-40166-4
  • Online ISBN 978-3-642-40167-1
  • Buy this book on publisher's site
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Energy, Utilities & Environment
Aerospace
Engineering