Advertisement

Map Projections

Cartographic Information Systems

  • Erik W. Grafarend
  • Rey-Jer You
  • Rainer Syffus

Table of contents

  1. Front Matter
    Pages i-xxvi
  2. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 1-109
  3. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 111-128
  4. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 129-175
  5. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 177-183
  6. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 185-237
  7. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 239-245
  8. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 247-253
  9. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 255-291
  10. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 293-310
  11. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 311-323
  12. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 325-329
  13. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 331-335
  14. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 337-345
  15. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 347-360
  16. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 361-413
  17. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 415-435
  18. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 437-452
  19. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 453-463
  20. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 465-476
  21. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 477-520
  22. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 521-570
  23. Erik W. Grafarend, Rey-Jer You, Rainer Syffus
    Pages 571-607
  24. Back Matter
    Pages 685-935

About this book

Introduction

In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. The first chapters are of foundational type. We introduce the mapping from a left Riemann manifold to a right one specified as conformal, equiaerial and equidistant, perspective and geodetic. In particular, the mapping from a Riemann manifold to a Euclidean manifold ("plane") and the design of various coordinate systems are reviewed . A speciality is the treatment of surfaces of Gaussian curvature zero. The largest part is devoted to the mapping the sphere and the ellipsoid-of-revolution to tangential plane, cylinder and cone (pseudo-cone) using the polar aspect, transverse as well as oblique aspect. Various Geodetic Mappings as well as the Datum Problem are reviewed. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps. The second extension reviews alternative maps for structures ,  namely torus (pneu), hyperboloid (cooling tower), paraboloid (parabolic mirror), onion shape (church tower) as well as clothoid (Hight Speed Railways) used in Project Surveying. Third, we present the Datum Transformation described by the Conformal Group C10 (3) in a threedimensional Euclidean space , a ten parameter conformal transformation. It leaves infinitesimal angles and distance ratios equivariant. Numerical examples from classical and new map projections as well as twelve appendices document the Wonderful World of Map Projections.

Keywords

Cartography ellipsoid hyperboloid map projections paraboloid sphere surfaces of type plane

Authors and affiliations

  • Erik W. Grafarend
    • 1
  • Rey-Jer You
    • 2
  • Rainer Syffus
    • 3
  1. 1.Department of Geodetic SciencesStuttgart UniversityStuttgartGermany
  2. 2.Department of GeomaticsNational Cheng Kung UniversityTainanTaiwan
  3. 3.ESG Elektroniksystem- und Logistik GmbHFuerstenfeldbruckGermany

Bibliographic information

Industry Sectors
Materials & Steel
Aerospace
Oil, Gas & Geosciences