Skip to main content

Orthogonal Supramolecular Interaction Motifs for Functional Monolayer Architectures

  • Book
  • © 2012

Overview

  • Nominated by the University of Twente, Netherlands, for a SpringerTheses Prize
  • Describes the development and design of new monolayer-based sensing platforms as chemical and biosensors
  • Provides a wide range of application examples of the new sensor systems - from biological problems to nanoelectronic and spintronic devices
  • Includes supplementary material: sn.pub/extras
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

  • 2922 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

Deniz Yilmaz' thesis describes a combination of orthogonal supramolecular interactions for the design of functional monolayer architectures on surfaces, that can be used as chemical and biosensors in a wide range of applications. The term “orthogonal supramolecular interactions” refers to non-covalent interactions that do not influence each other's assembly properties. Orthogonal self-assembly thus allows extended control over the self-assembly process and promotes new materials properties. The first part of the thesis employs orthogonal host-guest and lanthanide-ligand coordination interaction motifs to create supramolecular luminescent monolayers. The second part of the thesis describes the fabrication of functional monolayers on silicon and gold substrates for applications in electronics.
The results illustrate the power of weak supramolecular interactions to direct the immobilization of functional systems on surfaces. The combination of host-guest and lanthanide-ligand coordination interaction motifs on surfaces demonstrates that hybrid, multifunctional supramolecular monolayers can be fabricated by integrating different non-covalent interactions in the same system. This combination opens up new avenues for the fabrication of complex hybrid organic-inorganic materials and stimuli-responsive surfaces. Their utility is demonstrated through applications of the functional interfaces to biosensing and nanotechnology.

Authors and Affiliations

  • , Department of Chemistry, Northwestern University, Evanston, USA

    Mahmut Deniz Yilmaz

Bibliographic Information

Publish with us