Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction

  • Alberto Parmeggiani

Part of the Lecture Notes in Mathematics book series (LNM, volume 1992)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Alberto Parmeggiani
    Pages 1-5
  3. Alberto Parmeggiani
    Pages 7-13
  4. Alberto Parmeggiani
    Pages 15-53
  5. Alberto Parmeggiani
    Pages 67-77
  6. Alberto Parmeggiani
    Pages 93-110
  7. Alberto Parmeggiani
    Pages 121-147
  8. Alberto Parmeggiani
    Pages 161-190
  9. Back Matter
    Pages 239-260

About this book

Introduction

This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic continuation of the spectral zeta function associated with the spectrum, and the localization (and the multiplicity) of the eigenvalues of such systems, described in terms of “classical” invariants (such as the periods of the periodic trajectories of the bicharacteristic flow associated with the eiganvalues of the symbol). The book utilizes techniques that are very powerful and flexible and presents an approach that could also be used for a variety of other problems. It also features expositions on different results throughout the literature.

Keywords

calculus differential calculus dynamics eigenvalue operator quantization

Authors and affiliations

  • Alberto Parmeggiani
    • 1
  1. 1.Department of MathematicsUniversity of BolognaBolognaItaly

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-11922-4
  • Copyright Information Springer-Verlag Berlin Heidelberg 2010
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-642-11921-7
  • Online ISBN 978-3-642-11922-4
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book