Skip to main content

Quantum Kinetics in Transport and Optics of Semiconductors

  • Book
  • © 2008

Overview

  • Covers the state of the art of quantum transport and quantum kinetics in semiconductors, plus the latest applications
  • Supplies theoretical basis for ultrashort laser pulse spectroscopy in semiconductors
  • Links the theoretical basis and experimental results
  • Completely update edition - both a reference work for researchers and a self-tutorial for graduate students
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Series in Solid-State Sciences (SSSOL, volume 123)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (19 chapters)

  1. Introduction to Kinetics and Many-Body Theory

  2. Nonequilibrium Many-Body Theory

  3. Quantum Transport in Semiconductors

Keywords

About this book

Nanoscale miniaturization and femtosecond laser-pulse spectroscopy require a quantum mechanical description of the carrier kinetics that goes beyond the conventional Boltzmann theory. On these extremely short length and time scales, the electrons behave as do partially coherent waves. This monograph deals with quantum kinetics for transport in low-dimensional microstructures and for ultra-short laser pulse spectroscopy. The nonequilibrium Green function theory is described and used for the derivation of the quantum kinetic equations. Numerical methods for the solution of the retarded quantum kinetic equations are discussed and results are presented for high-field transport and for mesoscopic transport phenomena. Quantum beats, polarization decay, and non-Markovian behaviour are treated for femtosecond spectroscopy on a microscopic basis.

Since the publishing of the first edition in 1996, the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition introduces the reader to many of these areas, such as molecular electronics, noise calculations, build-up of screening and polaron correlations, and non-Markovian relaxation, among others. Connection to recent experiments is made, and it is emphasized how the quantum kinetic theory is essential in their interpretation.

Authors and Affiliations

  • Institut für Theoretische Physik, J.W. Goethe Universität, Frankfurt am Main, Germany

    Hartmut Haug

  • Department of Micro and Nanotechnology (MIC), Technical University of Denmark, Kongens Lyngby, Denmark

    Antti-Pekka Jauho

About the authors

Hartmut Haug obtained his Ph. D. (Dr. rer. nat. 1966) in Physics at the University of Stuttgart. From 1967 to 1969 he was a faculty member at the Department of Electrical Engeneering, University of Wisconsin in Madiason. After working as a scientific staff member at the Philips Research Laboratories in Eindhoven from 1969 to 1973, he joined the Institute of Theoretical Physics of the J.W.Goethe-University Frankfurt, where he was a full professor from 1975 to 2001 and currently is an emeritus. He has been a visiting scientist at many international research centers and universities.

Antti-Pekka Jauho obtained his Ph.D in Theoretical Condensed Matter Physics at Cornell University, USA, in 1982. He has been a faculty member at University of Copenhagen, Nordita (Copenhagen), and, since 1993, at Technical University of Denmark, where he has been Professor of Theoretical Nanotechnology at MIC, Department of Micro and Nanotechnology, since 2003. He is also a Distinguished Professor of the Finnish Academy since 2007, and spends half of his time at the Technical University of Helskinki, Finland.

Bibliographic Information

Publish with us